

Cumulative Subject Index for Volumes 149–1551

Α

Acetone

vanadyl phosphate intercalated with, structural analysis, 150, 356 Acid delithiation

partial, effects on electrochemical insertion properties of Ni-stabilized LiMn₂O₄ spinel oxides, **150**, 196

Activation energy

Fe-doped boron, 154, 188

Alkali halides

solid solution, mixing model, 153, 118

Alkali-metal amalgams

synthesis and structure, 149, 419

Alkoxides

Synroc precursor heated to 800 °C, intermediate cubic phase crystallized from, fluorite structure, 150, 209

preparation in polyol media, thermodynamic approach, 154, 405 Aluminum

 α -AlB₁₂

crystal chemistry, 154, 168

strength and creep in, 154, 191

γ-AlB₁₂, crystal chemistry, **154**, 168

Al₃BC₃, 300-K equation of state and high-pressure phase stability, 154,

AlSr₂YCu₂O₇, crystal growth and structure, 149, 256

BaAlBO₃F₂, crystal structure, 155, 354

B₄₈Al₃C₂, interband transitions and optical phonons, 154, 75

CaAl₁₂Si₄O₂₇ high-pressure phase with Al₆O₁₉ clusters, synthesis and structure, 153, 391

CaO:Al₂O₃:Nb₂O₅ system, phase equilibria and dielectric properties, 155, 78

CdAl₂Se₄, zone center frequencies in tetragonal phase, 153, 317 cryolite-alumina melt, TiB2 in, chemical and electrochemical behavior,

GdNi₃Al₂, structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, 150, 62

intercalation compounds of anionic oxalato complexes with layered double hydroxides, 153, 301

 $KAlQ_2$ (Q = Se,Te) chalcogenides with stacking faults, synthesis and structure, 149, 242

La₃Al_{0.44}Si_{0.93}S₇, crystal structure, **155**, 433

Mg-Al hydrotalcites, anion-exchanged, properties of, effects of guest-host interactions, 155, 332

Mg:Al ratio, effect on borate/nitrate or silicate/nitrate exchange in hydrotalcite, 151, 272

molten, TiB2 in, chemical and electrochemical behavior, 154, 107

Na₂Al₂(BO₃)₂O, crystal structure, comparison with other layered oxyborates and SiP₂O₇, 154, 344

Na₂SO₄-Al₂O₃

conductivity enhancement, 155, 154

ionic conductivity, mechanism and role of preparatory parameters, 153, 287

[N2C4H12]Al2(PO4)(HPO4)(C2O4)H2O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150,** 324

[NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, 151, 145

Ni_{1-x}Cu_xFeAlO₄, Mössbauer effect study, **149**, 434

Pb₅Al_{2.96}Cr_{0.04}F₁₉, ferroelastic phase, crystal structure at 300 K, 155, 427

Sc₂AlB₆, crystal growth and structure, **154**, 49

SrAl₂B₂O₇, 150, 404

Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, 155, 71

 $(Y,RE)Al_3(BO_3)_4$ solid solutions (RE = Nd,Gd,Ho,Yb,Lu), crystal growth and characterization, 154, 317

[Zn-Al-Cl] layered double hydroxide, thermally treated, X-ray diffraction pattern simulation, 152, 568

Amine phosphates

in preparation of open-framework metal phosphates, 152, 302

Ammonium

 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O, \ \ hydrothermal \ \ synthesis \ \ and$ crystal structure, 155, 409

La(H₂O)₂NH₄(C₂O₄)₂·H₂O, crystal structure and thermal behavior,

 $(NH_4)_{0.13}V_{0.13}Mo_{0.87}O_3$ solid solution, properties, **152**, 353

quaternary ions R_4N^+ (R = nPr, nBu, nPen), as structure directors for synthesis of zeolite-like heterobimetallic cyanide frameworks, 152, 286

Amorphization

BaCa_{0.393}Nb_{0.606}O_{2.91} at room temperature due to cation loss in aqueous media, 149, 262

Amorphous alloys

Co₇₇B₂₃, crystallization mechanism, 154, 145

Analytical electron microscopy

paracrystal formation from $Ni_{1-x}O$ and CaO upon interdiffusion, 152, 421

M₃O₅ intergrowth structures formed during low-temperature oxidation of anosovite, 150, 128

phase transformations induced by ball-milling, kinetics and mechanisms, 149, 41

Anion doping

effects on conductivity of Na₂SO₄, 155, 154

Anionic disorder

in Eu₃(BO₃)₂F₃, evidence from Eu³⁺ luminescence: comparison with $Ba_2Eu(CO_3)_2F_3$, **153**, 270

Anosovite

oxidation at low temperature, M3O5-anatase intergrowth structures formed during, analysis, 150, 128

1-(9-Anthrylethynyl)-4-chloromethyl-2,5-dimethoxybenzene

doped in polymer, photoluminescence and electroluminescence, effect of excimer behavior, 153, 192

Anticotunnite

reversible phase transition of antifluorite to, in Li2S at high pressures, **154**, 603

Antiferromagnetic ordering

long-range, in $BaLaMRuO_6$ (M = Mg,Zn), 150, 383

¹Boldface numbers indicate volume; lightface numbers indicate pagnation.

Antiferromagnetic transition

 $BaLn_2MnS_5$ (*Ln* = La,Ce,Pr), **153**, 330

TbB₄₁Si_{1.2}, 154, 223

Antiferromagnetism

in ladder-like Cu(II) coordination polymers, 152, 183

Antifluorite

reversible phase transition to anticotunnite in Li₂S at high pressures, 154, 603

Antimony

 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with p-type thermoelectric cage structure, synthesis and characterization, **151**, 61

[(CH $_3$ NH $_3$) $_{0.5}$ (NH $_4$) $_{1.5}$]Sb $_8$ S $_{13} \cdot 2.8$ H $_2$ O, hydrothermal synthesis and crystal structure, **155**, 409

Eu₁₆Sb₁₁, synthesis, structure, and properties, 155, 168

EuSn₃Sb₄ and related metallic Zintl phases, synthesis, structure, and resistivity, **150**, 371

Hg₆Sb₄BiBr₇ and Hg₆Sb₅Br₇, built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, 154, 350

NaSb₃O₂(PO₄)₂, synthesis and structure, 151, 21

Na₂Ti₂Sb₂O, powder neutron diffraction: structure-property relationships, **153**, 275

 γ -NiSb nanocrystals, synthesis by solvothermal coordination–reduction route at low temperature, **155**, 42

[(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370

 $Rb_2Sb_8S_{13}\cdot 3.3H_2O,$ hydrothermal synthesis and crystal structure, 155, 409

 RE_5M_2 Sb (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; <math>M = Ni,Pd) pnictides, crystal structure and bonding, **152**, 478

Sb₅PO₁₀, synthesis and structure, **155**, 451

Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55

Apatite

calcium fluorapatite, conversion into calcium hydroxyapatite under alkaline hydrothermal conditions, **151**, 65

Ca_{9.75}[(PO₄)_{5.5}(CO₃)_{0.5}]CO₃, A-type, structure analysis by single-crystal X-ray diffraction, **155**, 292

 $Ca_6Sm_2Na_2(PO_4)_6F_2$, crystal structure and polarized Raman spectra, 149, 308

 $Cd_5(PO_4)_3Br$ and $Cd_5(PO_4)_3I$, incommensurate modulation, **150**, 154 $La_5Si_2BO_{13}$ analog of, synthesis and neutron diffraction study, **155**, 389

related phosphates, synthesis and characterization, 149, 133
Arsenic

Bi_{6.67}O₄(AsO₄)₄, existence of, **154**, 435

Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS glasses, magnetic susceptibility and local structure, 152, 388

 $GdCuAs_2,$ symmetry-breaking transitions through $GdCuAs_{1.15}P_{0.85}$ to $GdCuP_{2.20},$ 155, 259

Hg₆As₄BiCl₇ built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, **154**, 350

 β -LiVOAsO₄, synthesis, structure, and physical studies, **150**, 250

 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, 155, 37

PbBi₆O₄(AsO₄)₄, existence of, 154, 435

V₃As₂, bonding analysis, **154**, 384

W₅As₄, electronic structure, **154**, 384

Aryloxides

Ti(IV)-aryloxide network materials, synthesis and characterization, **152**, 130

Aryl stacking interactions

structural mimicry by polymorphous one-dimensional tetrapyridylporphyrin coordination polymers, **152**, 253

Atomic force microscopy

cation loss from $BaCa_{0.393}Nb_{0.606}O_{2.91}$ in aqueous media leading to amorphization at room temperature, **149**, 262

[(Pb,Sb)S]_{2.28}NbS₂ Franckeite-type misfit compounds: distribution of Pb and Sb atoms in (Pb,Sb)S layers, **149**, 370

Atomic ordering

long-range, in $BaLaMRuO_6$ (M = Mg,Zn), 150, 383

Atomistic computer simulation

rare-earth oxide pyrochlores, comparison with results of wide-angle CBED, 153, 16

Atomistic free-energy minimization

analysis of chemical and thermal expansion of $(La_{1-x}Ca_x)CrO_3$, **149**, 320 Aurivillius phases

low-temperature reaction with halides, 150, 416

three-layer, cation disorder in, 153, 66

E

Ball-milling

anatase phase transformations induced by, kinetics and mechanisms, 149, 41

mechanochemical reactions in Sn-Zn-S system, 153, 371

 $(ZrO_2)_{0.8}\text{-}(\alpha\text{-Fe}_2O_3)_{0.2}$ powder for gas sensing applications, 155, 320 Band gap

boron-silicon thin film prepared by pulsed laser deposition, **154**, 141 pure and V-doped β -rhombohedral boron, **154**, 307

Band magnetism

 A_2T_2 Sn (A = Ce,U; T = Ni,Pd), local spin density functional calculations, **149**, 449

Band structure

CdCr₂S₄ and CdCr₂Se₄ spinels, **155**, 198

 $Dy_6MTe_2 (M = Fe,Co,Ni), 155, 9$

EuSn₃Sb₄ and related Zintl phases, 150, 371

graphite monofluoride, analysis with 3D cyclic cluster approach, 150, 286

 $K_{1.8}Mo_9S_{11}$, 155, 124

La₅Cu₆O₄S₇, **155**, 366

LaTe₂, **149**, 155

 A_2 Mo₉S₁₁ (A = K,Nb), **155**, 124

Rb₅Au₃O₂, **155**, 29

Sr₂NiN₂, **154**, 542

W₅As₄, **154**, 384

Barium

BaBi₃O_{5.5}, crystal growth and structure, **152**, 435

 $BaMBO_3F_2$ (M = Ga,Al), crystal structure, 155, 354

BaCa_{0.393}Nb_{0.606}O_{2.91}, cation loss in aqueous media leading to amorphization at room temperature, **149**, 262

 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), synthesis and structure, 149, 384

 $BaCe_xZr_{1-x}O_3$ (0 $\le x \le 1$) mixed perovskites, high-pressure Raman study, **149**, 298

Ba₂CoNbO₆ perovskite, magnetic transition in, 151, 294

Ba₈Co₇O₂₁, synthesis and structure, **151**, 77

 $Ln_{1.85}^{3}$ Ba $_{0.15}^{2}$ CuO₄ superconductors, true tolerance factor effects in, **155**, 138

 $Ba_4Er_2Cu_7O_{15-\delta}$, structural effects of Au and Al incorporation, **150**, 228 $Ba_2Eu(CO_3)_2F_3$, optical behavior, comparison with $Eu_3(BO_3)_2F_3$, **153**, 270

Ba₂FeNbO₆ perovskites, magnetic susceptibility and Mössbauer spectroscopy, 154, 591

BaGa₂B₂O₇, crystal structures, **154**, 598

 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with *p*-type thermoelectric cage structure, synthesis and characterization, **151**, 61

BaGa₂O₄, stuffed framework structure, 154, 612

Ba₆Ge_{25-x}, structure and thermoelectric properties, 153, 321

Ba₂₄Ge₁₀₀, preparation and structure, **151**, 117

Ba₆Ge₂₂In₃, structure and thermoelectric properties, **153**, 321

Ba₆Ge₂₃Sn₂, structure and thermoelectric properties, 153, 321

 $BaHf_{1-x}Zr_x(PO_4)_2$, UV-emitting X-ray phosphor, 155, 229

 $BaIr_{1-x}Co_xO_{3-\delta}$ (x = 0.5,0.7,0.8) perovskites, structural chemistry and electronic properties, **152**, 361

BaLaMRuO₆ (M = Mg,Zn), atomic and magnetic long-range ordering in. 150, 383

BaLiF₃ doped with Ce³⁺, optical spectroscopy properties and charge compensation, **150**, 178

Ba₂LuTaO₆, Yb³⁺ doped in, EPR study, **150**, 31

BaMnS₂, magnetic properties, 155, 305

BaLn₂MnS₅ (Ln = La,Ce,Pr), crystal structures and magnetic properties, **153**, 330

Ba₄Nd₂Cd₃Se₁₀, synthesis and structure, 149, 384

BaRuO₃, bond valence analysis, 151, 245

Ba₄Ru₃O₁₀, crystal structure and compressibility, **149**, 137

Ba₃SiI₂, synthesis, structure, and properties, 152, 460

BaSm₄(SiO₄)₃Se, crystal structure, 155, 433

Ba_{1-x}Sm_xSO₄, Sm²⁺ crystal chemistry and stability in, 154, 535

Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, 155, 305

BaTiO₃, flux additions in, overview and prospects, 155, 86

 $Ba_{1+x}V_8O_{21}$ bronze with tunnel structure, hydrothermal synthesis and crystal structure, 150, 330

Ba₆[V₁₀O₃₀(H₂O)] · 2.5H₂O with unusual arrangement of V^{IV}-O polyhedra, hydrothermal synthesis and crystal structure, **151**, 130

Ba₂YbTaO₆ with ordered perovskite structure, magnetic susceptibility, **150.** 31

in chlorapatite, effects on topotaxial replacement by hydroxyapatite under hydrothermal conditions, **154**, 569

 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies, **150**, 188

LaBaCuGaO₅, phase transition induced by high pressure, 155, 372

LaCoO₃–LaMnO₃–BaCoO_z–BaMnO₃ system, phase equilibria, **153**, 205

NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11- δ} and NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y} O_{14- δ}, defect chemistry and electrical properties, **155**, 216

Pr_{1-x}Ba_xCoO₃ perovskite, magnetic order, magnetic circular dichroism spectroscopic study, **152**, 577

Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, 153, 106

 $Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y$, superstructure derived from, X-ray and neutron-powder diffraction, **155**, 22

 $YBa_2Cu_4O_8$ superconductor, HRTEM surface profile imaging, 149, 327 Base cements

Mo₂NiB₂, with Cr and V additions, mechanical properties and structure, effects of Mo/B atomic ratio, **154**, 263

Batteries

electrochemical insertion properties of Ni-stabilized LiMn₂O₄ spinel oxides, effects of partial acid delithiation, **150**, 196

1,3,5-Benzenetricarboxylate

hydrogen bond-directed hexagonal frameworks based on, 152, 261

N-Benzyl piperidinium dihydrogenmonophosphate

crystal structure and phase transitions, 155, 298

Beryllium

intercalation compounds of anionic oxalato complexes with layered double hydroxides, **153**, 301

Bipyridine

[Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280

4,4'-Bipyridylethane

coordination polymers with, synthesis and structure, **152**, 113 Bismuth

BaBi₃O_{5.5}, crystal growth and structure, 152, 435

 RE_5M_2 Bi (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; <math>M = Ni,Pd) pnictides, crystal structure and bonding, **152**, 478

Bi₁₄CrO₂₄, crystal structure, **149**, 209

 $A_3 \text{Bi}_5 \text{Cu}_2 \text{S}_{10}$ (A = Rb,Cs), structure and conductivity, 155, 243

BiCu₃Ti₃FeO₁₂, dielectric constant, 151, 323

Bi_{2/3}Cu₃Ti₄O₁₂, dielectric constant, **151**, 323

Bi_{0.775}La_{0.225}O_{1.5} of rhombohedral Bi-Sr-O type, structure and conductivity optimization by polycationic substitutions for La, **149**, 341

Bi_{1-y}La_yO_{1.5} monoclinic solid solution, identification and structural relationship to rhombohedral Bi-Sr-O type, **151**, 281

 $Bi_{4-x}La_xTi_3O_{12}$ (x = 1,2), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

BiMg₂VO₆, variable-temperature X-ray diffraction study, 149, 143

Bi₂MoO₆ catalyst, high-temperature incommensurate-to-commensurate phase transition, **155**, 206

Bi₂Nd₄O₉ monoclinic phase, structure, 153, 30

 $\text{Bi}_{2-x}\text{Nd}_x\text{Ru}_2\text{O}_{7-y}$ (0 < x < 2) pyrochlores, metal–nonmetal transition in, structural studies, **151**, 25

(1-x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related phases, electron diffraction and XRD studies, **149**, 218

 Bi_2O_3 -Mo O_3 system, EDS and TEM study: compounds with structure based on $[Bi_12O_{14}]_{\infty}$ columns, 149, 276

 $Bi_{6.67}O_4(XO_4)_4$ (X = P,V,As), existence of, **154**, 435

Bi₂Pb₂O₇ with pyrochlore structure, hydrothermal synthesis and characterization, 149, 314

 $BiM_4^{2+}(PO_4)_3O$ ($M^{2+}=Ca$,Sr), synthesis and characterization, **149**, 133 $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$ ceramics, sintering and conductivity, effect of particle size, **155**, 273

BiSeO₃Cl, crystal structure and dielectric and nonlinear optical properties, 149, 236

1201 Bi_{0.4}Sr_{2.6}MnO_{5-δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6-δ} with 1:1 Bi–Sr ordering, synthesis and characterization, **151**, 210

 $\text{Bi}_{2-x}\text{Sr}_{2+x}\text{Ti}_{1-x}\text{Nb}_{2+x}\text{O}_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

 Bi_2TeO_5 , $Bi_2Te_2O_7$, and α - and β - $Bi_2Te_4O_{11}$, IR spectra, 152, 392

BiZn₂PO₆, crystal structure, **153**, 48

Ce_{1-y}Bi_yVO₄ with zircon-type structure, preparation by solid-state reaction in air, **153**, 174

(CH₃NH₃)₃Bi₂Cl₉, low-temperature phase transition and structural relationships, 155, 286

Eu₁₆Bi₁₁, synthesis, structure, and properties, 155, 168

Hg₆As₄BiCl₇ and Hg₆Sb₄BiBr₇, built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, 154, 350

KBi₂CuS₄, structure and conductivity, 155, 243

Mo_{0.16}Bi_{0.84}O_{1.74}, high-temperature cubic fluorite-type phase with 3D incommensurate modulation, synthesis and structure, **152**, 573

 $PbBi_6O_4(XO_4)_4$ (X = P,V,As), existence of, **154**, 435

Pb₅Bi₁₈P₄O₄₂, crystal structure, **151**, 181

Sr_{1.25}Bi_{0.75}O₃ and Sr_{0.4}K_{0.6}BiO₃, structure determination as function of temperature from synchrotron X-ray powder diffraction data, **150**, 316

 $Sr_{3.75}K_{1.75}Bi_3O_{12}$ and $Sr_{3.1}Na_{2.9}Bi_3O_{12},$ synthesis and characterization, $\textbf{152},\, 492$

Blue bronze

K_{0.3}MoO₃, interactions of sliding charge-density waves with phonons, **155**, 105

Bonding

 Dy_6MTe_2 (M = Fe,Co,Ni), **155**, 9

in FeZn₁₀ and Fe₁₃Zn₃₉, **151**, 85

GdCuAs₂, GdCuAs_{1,15}P_{0,85}, and GdCuP_{2,20}, 155, 259

M₅Ge₄ compounds in Ge-Ta-Zr system, **150**, 347

in IrIn₂, Ti₃Rh₂In₃, and ZrIn₂, 150, 19

rare-earth-rich ternary pnictides RE_5M_2X (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu;M = Ni,Pd;X = Sb,Bi), **152**, 478

in Ti₅Te₄-related compounds, theoretical study, 154, 384

```
Bond valence
  BaRuO<sub>3</sub>, 151, 245
  ErBaSrCu_{3-x}(PO_4)_xO_y (x = 0.0,0.10,0.20), 150, 188
  SmNi_{1-x}Co_{x}O_{3}, 150, 145
  2D misfit compounds, in quantitation of interlayer charge transfer, 155, 1
  exchange with nitrate in hydrotalcite, effect of Mg:Al ratio, 151, 272
Borazines
  polymers prepared from, structure, effect on crystallinity of boron ni-
       tride, 154, 137
Boron
  \alpha-AlB<sub>12</sub>
    crystal chemistry, 154, 168
    strength and creep in, 154, 191
  γ-AlB<sub>12</sub>, crystal chemistry, 154, 168
  Al<sub>3</sub>BC<sub>3</sub>, 300-K equation of state and high-pressure phase stability, 154,
  B<sub>2</sub>, electronic energies and vibration frequencies, quasi-classical deter-
       mination, 154, 148
  B<sub>96</sub> isomers, ab initio study: quasicrystals and nanotubes, 154, 269
  BaMBO_3F_2 (M = Ga,Al), crystal structure, 155, 354
  B<sub>48</sub>Al<sub>3</sub>C<sub>2</sub>, interband transitions and optical phonons, 154, 75
    coating of graphite for protection against oxidation, 154, 162
    crystallinity, effect of molecular precursor structure, 154, 137
    electronic energies and vibration frequencies, quasi-classical deter-
       mination, 154, 148
    films prepared by MOCVD, 154, 101
    nanotubes, structure and mechanisms of growth and formation, 154,
       214
    phase diagram, 154, 280
  B_{12}N_{12},\,B_{24}N_{24},\,\text{and}\,\,B_{60}N_{60},\,\text{semiempirical} and molecular dynamics
       studies, 154, 214
  BO, electronic energies and vibration frequencies, quasi-classical deter-
       mination, 154, 148
  borocarbides
    Ln-M-B-C (Ln = rare earths, Y; M = Ni,Pd), chemical and super-
       conducting properties, 154, 114
    R_5B_2C_5 (R = Y,Ce-Tm), structural, electronic, and magnetic proper-
       ties, 154, 286
  boron carbides
    BC, electronic energies and vibration frequencies, quasi-classical de-
       termination, 154, 148
    B<sub>4</sub>C, strength and creep in, 154, 191
    enriched in 10B, 11B, and 13C isotopes, IR-active phonons and struc-
       ture elements, 154, 79
    lattice dynamics, effects of crystal geometries, 154, 20
    sintering, 154, 194
    structural defects, correlation with electronic properties, 154, 61
  boron phosphide films
    preparation by photo- and thermal chemical vapor deposition pro-
       cesses, 154, 39
    thermoelectric properties, 154, 26
  borosilicates, crystallization and structural characteristics, 154, 312
  B_{12}P_2 wafers, electrical and thermal properties, 154, 33
  BPO<sub>4</sub> doped with Li, ionic distribution in, NMR study, 153, 282
  B-Si thin film, preparation by pulsed laser deposition and properties,
  CeB<sub>6</sub>
    floating zone growth and high-temperature hardness, 154, 238
```

interband transitions, IR-active phonons, and plasma vibrations, 154,

 RCo_4B (R = Y,Pr,Nd,Sm,Gd,Tb), magnetic properties, 154, 242

Co₇₇B₂₃ amorphous alloy, crystallization mechanism, 154, 145

```
compounds of, microanalysis with nuclear microprobe, 154, 301
(Cr_{1-x}TM_x)_3B_4 (TM = Ti,V,Nb,Ta,Mo,W) large crystals, synthesis and
     analysis, 154, 45
crystals rich in, geometries of, effects on lattice dynamics, 154, 20
DyB<sub>6</sub>, magnetic entropy, 154, 275
EuB<sub>6</sub>, interband transitions, IR-active phonons, and plasma vibrations,
     154, 87
Eu<sub>3</sub>(BO<sub>3</sub>)<sub>2</sub>F<sub>3</sub>, anionic disorder in, evidence from Eu<sup>3+</sup> luminescence:
     comparison with Ba<sub>2</sub>Eu(CO<sub>3</sub>)<sub>2</sub>F<sub>3</sub>, 153, 270
Fe-doped, physical-mechanical characteristics, 154, 188
  preparation by photo- and thermal chemical vapor deposition pro-
     cesses, 154, 39
  thermoelectric properties, 154, 26
MGa_2B_2O_7 (M = Sr,Ba), crystal structures, 154, 598
GdB<sub>6</sub>, magnetic entropy, 154, 275
Gd<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>, thermal behavior and structural analysis, 154, 204
Hf-B-C system, phase equilibria, calculation by thermodynamic
     modeling, 154, 257
HoB<sub>6</sub>, magnetic entropy, 154, 275
icosahedral solids rich in, structural defects, correlation with electronic
     properties, 154, 61
LaB<sub>6</sub>
  chemical vapor deposition, thermodynamic estimation, 154, 157
  floating zone growth and high-temperature hardness, 154, 238
  interband transitions, IR-active phonons, and plasma vibrations, 154,
La<sub>3</sub>BSi<sub>2</sub>O<sub>10</sub>, crystallization and structural characteristics, 154, 312
LaB<sub>6</sub>-(Ti,Zr)B<sub>2</sub> alloys, eutectic crystallization, 154, 165
La<sub>5</sub>Si<sub>2</sub>BO<sub>13</sub>, synthesis and neutron diffraction study, 155, 389
metal borides, solid state structures, molecular models of, 154, 110
metal hexaborides, interband transitions, IR-active phonons, and
     plasma vibrations, 154, 87
MgOs<sub>3</sub>B<sub>4</sub>, channel structure, 154, 232
Mo<sub>2</sub>NiB<sub>2</sub> boride base cements with Cr and V additions, mechanical
     properties and structure, effects of Mo/B atomic ratio, 154, 263
Na_2M_2(BO_3)_2O (M = Al,Ga), crystal structure, comparison with other
     layered oxyborates and SiP2O7, 154, 344
Na<sub>3</sub>[B<sub>6</sub>O<sub>9</sub>(VO<sub>4</sub>)], synthesis and crystal structure, 150, 342
Na<sub>2</sub>O-B<sub>2</sub>O<sub>3</sub> glass system, phase separation in, NMR study, 149, 459
NbB<sub>2</sub>, chemical vapor deposition, thermodynamic estimation, 154,
NdB<sub>6</sub>, floating zone growth and high-temperature hardness, 154, 238
R_2NiB<sub>10</sub> (R = Y,Ce-Nd,Sm,Gd-Ho), synthesis, crystal structure, and
     magnetic and electrical properties, 154, 246
PrB<sub>6</sub>, floating zone growth and high-temperature hardness, 154, 238
quantitative electron probe microanalysis, 154, 177
rare-earth hexaborides, phonon and specific heat analyses, 154, 275
Rb<sub>2</sub>[B<sub>4</sub>O<sub>5</sub>(OH)<sub>4</sub>] · 3.6H<sub>2</sub>O, crystal structure and thermal behavior, 149,
α-rhombohedral, production by amorphous boron crystallization, 154,
     199
β-rhombohedral
  high-purity, and carbon-doped, modulated photoconductivity, 154,
  high-purity, photoluminescence and steady-state interband photocon-
     ductivity, 154, 68
  isotopically modified, phonon properties, 154, 296
  metal-doped, thermoelectric properties, 154, 13
  pure, and V-doped, modulated photocurrent measurements, 154,
     307
  structural defects, correlation with electronic properties, 154, 61
Sc<sub>2</sub>AlB<sub>6</sub>, crystal growth and structure, 154, 49
ScB<sub>17</sub>C<sub>0.25</sub>, single-crystal XRD and TEM study, 154, 130
```

ScOs₃B₄, channel structure, 154, 232

sintering, 154, 194

 $Sm_{0.8}B_6$, interband transitions, IR-active phonons, and plasma vibrations, 154, 87

 SmB_6

floating zone growth and high-temperature hardness, **154**, 238 interband transitions, IR-active phonons, and plasma vibrations, **154**, 87 $SrAl_2B_2O_7$, **150**, 404

 $SrMn_{1-y}(B,C)_yO_{3-\delta}$, order-disorder phenomena, **149**, 226

TaB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 TbB₆, magnetic entropy, **154**, 275

TbB₄₁Si_{1.2}, specific heat, **154**, 223

thin film, preparation and thermoelectric power, 154, 153

three-coordinate organoborons, linear and nonlinear optical properties, 154, 5

TiB₂

chemical and electrochemical behavior in cryolite-alumina melt and in molten aluminum, **154**, 107

chemical vapor deposition, thermodynamic estimation, 154, 157

 $(Y,RE)Al_3(BO_3)_4$ solid solutions (RE = Nd,Gd,Ho,Yb,Lu), crystal growth and characterization, **154**, 317

YB₆, interband transitions, IR-active phonons, and plasma vibrations, 154, 87

YB₆₆, effect of transition metal doping, **154**, 54

YbB₆, interband transitions, IR-active phonons, and plasma vibrations, **154**, 87

YB₄₁Si₁₂, transport phenomena, **154**, 229

ZnO-B₂O₃ fluxes, effects on dieletric properties of BaTiO₃, **155**, 86 ZrB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 γ-Brass

clusters isotypic to, in Mn₃Ga₅, 153, 398

Bromine

Cd₅(PO₄)₃Br apatite, incommensurate modulation, **150**, 154

 α - and β -[Cu₂Br(C₅H₃N₂O₂)₂(H₂O)], synthesis and characterization, **152.** 174

Hg₆Sb₄BiBr₇ and Hg₆Sb₅Br₇, built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, **154**, 350

Ni(NH₃)₂Br₂, preparation and crystal structures, 152, 381

PbBr₂, inert pair effects: crystal structure of SnBr₂, 149, 28

SnBr₂, crystal structure, 149, 28

Sr(OH)Br, hydroxide ion disorder in, 151, 267

Bronze

 $Ba_{1+x}V_8O_{21}$, with tunnel structure, hydrothermal synthesis and crystal structure, **150**, 330

Ce_xWO₃, preparation by thermal degradation of polyoxotungstates, **149**, 378

H_xMoO₃, CDW superstructures, 149, 75

hydrated lithium and sodium vanadium bronzes, synthesis, 149, 443

 $K_{0.3}MoO_3$, interactions of sliding charge-density waves with phonons, 155, 105

 ${
m Nb_7W_{10}O_{47}}$ tetragonal bronze-type phase, superstructure and twinning, 149, 428

 Th_xWO_3 , preparation by thermal degradation of polyoxotung states, 149, 378

 U_xWO_3 , preparation by thermal degradation of polyoxotung states, 149, 378

 RE_xWO_3 (RE = La,Nd) synthesized under high pressure, X-ray diffraction and electron microscopy, **154**, 466

Building units

design and scale chemistry, 152, 37

Butanediols

intercalates with vanadyl and niobyl phosphates, preparation and characterization, **151**, 225

Cadmium

 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), synthesis and structure, **149**, 384 $Ba_4Nd_2Cd_3Se_{10}$, synthesis and structure, **149**, 384

C

Cd²⁺, systematic tuning of luminescent properties of self-activated ZnGa₂O₄ phosphors by substitution for Zn²⁺, **150**, 204

CdAl₂Se₄, zone center frequencies in tetragonal phase, 153, 317

CdCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, 149, 113

CdCr₂S₄ and CdCr₂Se₄ spinels, electronic band structure, **155**, 198 CdCu₃Ti₄O₁₂, dielectric constant, **151**, 323

(Cd_{1-x}Mn_x)Mn₂O₄, synthesis, stoichiometry, and electrical transport properties, 153, 231

 $Cd_{1-\delta}Mn_2O_v$, crystal chemistry, Mn-K edge XAS study, **149**, 252

Cd(OH)Cl, synthesis, crystal structure, and relationship to brucite type, 151, 308

 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236

Cd₅(PO₄)₃Br and Cd₅(PO₄)₃I apatites, incommensurate modulation, **150**, 154

CdSe cubic nanocrystals, room-temperature synthesis in aqueous solution, 151, 241

Ce₂Ni₂Cd, synthesis, structure refinement, and properties, **150**, 139 mesostructured 3D materials based on [Ge₄S₁₀]⁴⁻ and [Ge₄Se₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

seven-coordinated diaquasuccinatocadmium(II) bidimensional polymer, crystal structure and vibrational and thermal behavior, **153**, 1

Calcium

BaCa_{0.393}Nb_{0.606}O_{2.91}, cation loss in aqueous media leading to amorphization at room temperature, **149**, 262

(1-x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related phases, electron diffraction and XRD studies, **149**, 218

 $CaAl_{12}Si_4O_{27}$ high-pressure phase with Al_6O_{19} clusters, synthesis and structure, 153, 391

 $\rm CaCu(HCOO)_4$ and $\rm Ca_2Cu(HCOO)_6$ crystals, temperature-dependent Raman study, 154, 338

 $Ln_{1.85}^{3.85}Ca_{0.15}^{2+}CuO_4$ superconductors, true tolerance factor effects in, 155, 138

Ca_{4.78}Cu₆O_{11.60}, crystal structure, **151**, 170

Ca_{3.1}Cu_{0.9}RuO₆, synthesis, structural chemistry, and magnetic properties, **153**, 254

CaCu₃Ti₄O₁₂, dielectric constant, 151, 323

CaErPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, 150, 112

Ca₂Fe₂O₅, ¹¹⁹Sn dopant atoms in, hyperfine interactions and dynamic characteristics, 151, 313

CaIn₂O₄ phosphors activated by Pr, luminescence properties, **155**, 441 CaLuPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112

 $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), structure, resistivity, and magnetic susceptibility. **152**, 474

Ln_{0.4}Ca_{0.6}MnO₃ (Ln = La,Pr,Nd,Sm), Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330

CaMnO₃, Mn site-doped, colossal magnetoresistance, 149, 203

 $Ca_4Nb_2O_9 = 3 \cdot Ca(Ca_{1/3}Nb_{2/3})O_3$, perovskite-like polymorphs, octahedral tilting and cation ordering in, **150**, 43

CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483

CaO:Al₂O₃:Nb₂O₅ system, phase equilibria and dielectric properties, 155, 78

CaO-MgO and CaO-MnO solid solutions, mixing properties, semiempirical and ab initio calculations, 153, 357

- Ca_{9.75}[(PO₄)_{5.5}(CO₃)_{0.5}]CO₃, A-type carbonate apatite, structure analysis by single-crystal X-ray diffraction, **155**, 292
- M^{3+} Ca₄(PO₄)₃O (M^{3+} = Bi,La), synthesis and characterization, **149**, 133 [Ca₁₀(PO₄)₆(OH)₂] hydroxyapatite, site preference of rare earth elements in, **149**, 391
- Ca-Rh-O system, chemical potential and Gibbs energy of formation measurements, solid state cells with buffer electrodes for, 150, 213
- Ca₆Sm₂Na₂(PO₄)₆F₂, crystal structure and polarized Raman spectra, **149**, 308
- $\text{Ca}_2\text{Ta}_2\text{O}_7\text{-Sm}_2\text{Ti}_2\text{O}_7$ system, syntheses in, structures, and crystal chemistry, **150**, 167
- CaTmPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112
- CaV₄O₉, spin exchange interactions of, spin dimer analysis, 153, 263
- CaYbPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112
- Ce_{1-x}CaVO_{4-0.5x} with zircon-type structure, preparation by solid-state reaction in air, **153**, 174
- in chlorapatite, effects on topotaxial replacement by hydroxyapatite under hydrothermal conditions, **154**, 569
- K₂CaNaTa₃O₁₀ Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46
- KCa₂Nb₃O₁₀ layered perovskite, crystal structure, 151, 40
- K₂Ca₂Ta₂TiO₁₀·0.8H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46
- (La_{1-x}Ca_x)CrO₃, chemical and thermal expansion, 149, 320
- La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, structure and magnetic properties, **152**, 503
- NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}O_{14- δ}, defect chemistry and electrical properties, **155**, 216
- $Ni_{1-x}O/CaO$, paracrystal formation upon interdiffusion, **152**, 421 phosphate formation, effects of Ni, **151**, 163
- Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru, micronanostructures, correlation with magnetic transitions, 155, 15
- Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, **153**, 106
- $\{[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]\}_n$, 151, 286
- Calcium fluorapatite
 - conversion into calcium hydroxyapatite under alkaline hydrothermal conditions, 151, 65
- Calcium phosphate
 - formation, effects of Ni, 151, 163
- Calorimetry
 - Sr(OH)Br, analysis of hydroxide ion disorder, 151, 267
- α -Ti(HPO₄)₂·H₂O with intercalated heterocyclic amines, **154**, 557 Carbon
 - Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure of molecular and extended complexes, **152**, 247
 - Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, structures and magnetic properties. 152, 159
 - Al_3BC_3 , 300-K equation of state and high-pressure phase stability, 154, 254
 - alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271
 - Ba₂Eu(CO₃)₂F₃, optical behavior, comparison with Eu₃(BO₃)₂F₃, **153**,
- B₄₈Al₃C₂, interband transitions and optical phonons, **154**, 75
- N-benzyl piperidinium dihydrogenmonophosphate, crystal structure and phase transitions, **155**, 298
- borocarbides
 - Ln-M-B-C (Ln = rare earths, Y; M = Ni,Pd), chemical and superconducting properties, **154**, 114
 - $R_5B_2C_5$ (R=Y,Ce-Tm), structural, electronic, and magnetic properties, **154**, 286

- boron carbides
 - BC, electronic energies and vibration frequencies, quasi-classical determination, 154, 148
 - B₄C, strength and creep in, 154, 191
 - enriched in ¹⁰B, ¹¹B, and ¹³C isotopes, IR-active phonons and structure elements, **154**, 79
 - lattice dynamics, effects of crystal geometries, 154, 20
 - structural defects, correlation with electronic properties, 154, 61
- CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent Raman study, **154**, 338
- Ca_{9,75}[(PO₄)_{5,5}(CO₃)_{0,5}]CO₃, A-type carbonate apatite, structure analysis by single-crystal X-ray diffraction, **155**, 292
- C(CH₃)₄, system with CCl₄, thermodynamics, **154**, 390
- CCl₄, system with neopentane, thermodynamics, 154, 390
- $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236
- CH₄, mixture with H₂, temperature-programmed reaction with, in synthesis of tungsten carbides, **154**, 412
- (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180
- (CH₃NH₃)₃Bi₂Cl₉, low-temperature phase transition and structural relationships, **155**, 286
- $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, hydrothermal synthesis and crystal structure, **155**, 409
- (C₄H₁₂N₂)(H₃O)[(VOPO₄)₄(H₂O)H₂PO₄]·3H₂O, hydrothermal synthesis and characterization, **154**, 514
- (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460
- (C₄H₁₂N₂)[(VO)(VO₂)₂(H₂O)(PO₄)₂], hydrothermal synthesis and characterization, **154**, 514
- [C₂N₂H₁₀]₂Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507
- $[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}$, isolation and transformation to $[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}$, **150**, 417
- [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280
- Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143
- coordination polymers with 4,4'-dipyridyldisulfide, synthesis and structure, **152**, 113
- α and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174
- [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141
- 1,2-dihydro-N-aryl-4,6-dimethylpyrimidin-2-ones, C-H···O and C-H···N networks in, 152, 221
- (Fe(CN)₆)³⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332
- Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, **152**, 229 graphite
- intercalated with TaCl₆⁻ and TaOCl₃, structural analysis with molecular simulations, **149**, 68
- oxidation protection by BN coatings, 154, 162
- graphite monofluoride, structure and properties, analysis with 3D cyclic cluster approach, **150**, 286
- Hf-B-C system, phase equilibria, calculation by thermodynamic modeling, 154, 257
- (H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, **152**, 229 hydrogen bond-directed hexagonal frameworks based on 1,3,5-benzenet-ricarboxylate, **152**, 261
- $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O$ ($M = K, NH_4$), crystal structure and thermal behavior, **150**, 81
- metal carboxylates, microporous materials, synthesis and gas occlusion properties, **152**, 120

methylamines, intercalation into TiS2, 155, 326

Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122

Na(O₂CC≡CH), structure and γ-ray-induced solid-state polymerization: effect of bilayer formation on solid-state reactivity, **152**, 99

[N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324

NCS⁻ counterion, role in anomalous spin crossover of mechanically strained Fe(II)-1,10-phenanthroline complexes, **153**, 82

[NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, **151**, 145

 $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(PO_4)_2]$ and $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(HPO_4)_3]$, synthesis and crystal structure, **155**, 62

 CH_2NH_3][$CO_2(HPO_4)_3$], synthesis and crystal structure, 155, 62 [$NH_3(CH_2)_3NH_3$]_{0.5}[$M(OH)AsO_4$] (M = Ga,Fe), synthesis and characterization, 155, 37

NH₂(CH₂)₄NH₂V₄O₉, spin exchange interactions of, spin dimer analysis, **153**, 263

[Pb₆O₄](OH)(NO₃)(CO₃), crystal structure, 153, 365

polymeric Ag(I)-hexamethylenetetramine complexes, structure and topological diversity, **152**, 211

polymorphous one-dimensional tetrapyridylporphyrin coordination polymers structurally mimicking aryl stacking interactions, **152**, 253

 $(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se; M = Mn,Ni), synthesis and structure,**153**, 195

 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M=Mn,Ni), synthesis and structure, **153**, 195

 β -rhombohedral boron doped with, modulated photoconductivity, **154**, 93

ScB₁₇C_{0.25}, single-crystal XRD and TEM study, **154**, 130

SrC₂, synthesis and crystal structure, 151, 111

 $Sr_4Fe_2O_6CO_3$, synthesis, crystal structure, and magnetic order, **152**, 374 $SrMn_{1-y}(B,C)_yO_{3-\delta}$, order–disorder phenomena, **149**, 226

Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and polyphenolic 2D motifs, synthesis and characterization, **152**, 130

(V^{IV}O)₂(H₂O){O₃P-(CH₂)₃-PO₃}·2H₂O, hydrothermal synthesis, structure, and magnetic behavior, **155**, 238

W carbides, synthesis by temperature programmed reaction with CH₄-H₂ mixtures, **154**, 412

zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen), as structure directors for, **152**, 286

 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107

 $Zn_4(PO_4)_2(HPO_4)_2\cdot 0.5(C_{10}H_{28}N_4)\cdot 2H_2O,$ hydrothermal synthesis and crystal structure, 154, 368

Carbonate apatite

A-type, structure analysis by single-crystal X-ray diffraction, **155**, 292 Carbon tetrachloride

system with neopentane, thermodynamics, 154, 390

Carburization

WO₃ by CH₄-H₂ mixture, **154**, 412

Cation anti-site disorder

rare earth oxide pyrochlores, 153, 16

Cation disorder

in three-layer Aurivillius phases, 153, 66

Cation doping

effects on conductivity of Na₂SO₄, 155, 154

Cation loss

from $BaCa_{0.393}Nb_{0.606}O_{2.91}$ in aqueous media, resulting amorphization at room temperature, **149**, 262

Cation ordering

La and Sr ions on A cationic sites in $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La, Pr, Nd, Sm, Eu, Gd), 150, 1

in perovskite-like $Ca_4Nb_2O_9=3\cdot Ca(Ca_{1/3}Nb_{2/3})O_3$ polymorphs, 150, 43

Cavity-containing materials

resorcin[4]arenes based on, design strategies, 152, 199

Ceramics

 $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$, sintering and conductivity, effect of particle size, **155**, 273

ZnO, sintered, redox reaction of Pr₂O₃ in, **149**, 349

Cerium

BaCe₂MnS₅, crystal structure and magnetic properties, 153, 330

 $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq 1$) mixed perovskites, high-pressure Raman study, **149**, 298

Ce³⁺, BaLiF₃ doped with, optical spectroscopy properties and charge compensation, 150, 178

CeB₆

floating zone growth and high-temperature hardness, **154**, 238 interband transitions, IR-active phonons, and plasma vibrations, **154**, 87

 $Ce_{1-y}Bi_{y}VO_{4}$ with zircon-type structure, preparation by solid-state reaction in air, 153, 174

Ce₅Mo₃₂O₅₄, with *trans*-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, synthesis, structure, and properties, **152**, 403

 $Ce_{1-x}Nd_xTiO_3$, magnetic properties, 153, 145

Ce₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246

Ce₂Ni₂Cd, synthesis, structure refinement, and properties, **150**, 139

 ${
m CeO}_{1.765}$ and ${
m CeO}_{1.800}$, phase transitions, single-crystal neutron diffraction studies. **153**, 218

CeO₂ nanocrystals, X-ray absorption spectroscopy, 149, 408

CePdGe, order of Pd and Ge atoms in, 154, 329

 $Ce_{1-x}Sm_xTiO_3$ (0 $\le x \le 1$) solid solutions, magnetic properties, 153, 145

 $\text{Ce}_2 T_2 \text{Sn } (T = \text{Ni}, \text{Pd})$, band magnetism, local spin density functional calculations, **149**, 449

 $CeVO_4$ and $Ce_{1-x}MVO_{4-0.5x}$ (M = Ca,Sr,Pb) with zircon-type structure, preparation by solid-state reaction in air, 153, 174

Ce_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates, 149, 378

t'_{meta}-(Ce_{0.5}Zr_{0.5})O₂ phase prepared by reduction and successive oxidation of t' phase, electrical conductivity, **151**, 253

fluorite-type oxides containing, lattice oxygen transfer in, 155, 129

(Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z, 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

Cesium

Cs₇Au₅O₂, synthesis, structure, and properties, 155, 29

Cs₃Bi₅Cu₂S₁₀, structure and conductivity, **155**, 243

Cs₂CoCl₄, high-pressure studies by X-ray diffraction, 153, 212

CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60

Cs₂CuCl₄, high-pressure studies by X-ray diffraction, 153, 212

 $Cs_2CuP_3S_9$, chiral compound with chiral screw helices, preparation, structure, and characterization, 151, 326

Cs₃Hg₂₀ and Cs₅Hg₁₉, synthesis and structure, **149**, 419

Cs₂KMnF₆, phase transition

crystal structures of low- and high-temperature modifications, 150,

at high pressure, 153, 248

Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, 153, 185

 $Cs_8Na_{16}Ge_{136}$ and $Cs_8Na_{16}Si_{136}$ clathrates, synthesis and characterization, **153**, 92

Cs₂V₄O₉, spin exchange interactions of, spin dimer analysis, **153**, 263 Chalcogenides

 Ag_8SnE_6 (E = S,Se), synthesis and characterization, **149**, 338

complex, local environment in, X-ray absorption spectra as fingerprint of, 150, 363

 KMQ_2 (M = Al,Ga; Q = Se,Te), with stacking faults, synthesis and structure, **149**, 242

mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

Charge compensation

BaLiF₃ doped with Ce³⁺, 150, 178

Charge density wave

H_xMoO₃ bronze superstructures, 149, 75

NiTa₂Se₇ with incommensurately modulated low-temperature structure, **153**, 152

sliding, interactions with phonons, 155, 105

Charge disproportionation

 $Pr_{1-x}Sr_xFeO_{3-\delta}$, **150**, 233

Charge distribution analysis

 $LuFeO_3(ZnO)_m$: effect of coordination polyhedra shape on cation distribution, **150**, 96

Charge ordering

 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, 153, 140

Chemical expansion

 $(La_{1-x}Ca_x)CrO_3$, **149**, 320

Chemical potential

Ca-Rh-O system, measurement, solid state cells with buffer electrodes for, 150, 213

Chemical vapor deposition

borides, thermodynamic estimation, 154, 157

metalorganic, BN films prepared by, 154, 101

photo- and thermal, preparation of boron and boron phosphide films, **154.** 39

Chevrel phases

 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural studies, 155, 250 Chiral solids

Cs₂CuP₃S₉, with chiral screw helices, preparation, structure, and characterization, **151**, 326

formation via molecular building block approach, 152, 68

Chlorapatites

metal ions in, effects on topotaxial replacement by hydroxyapatite under hydrothermal conditions, **154**, 569

Chlorine

BiSeO₃Cl, crystal structure and dielectric and nonlinear optical properties, **149**, 236

CCl₄, system with neopentane, thermodynamics, 154, 390

Cd(OH)Cl, synthesis, crystal structure, and relationship to brucite type, 151, 308

 $(CH_3NH_3)_3Bi_2Cl_9$, low-temperature phase transition and structural relationships, 155, 286

Cs₂CoCl₄, high-pressure studies by X-ray diffraction, 153, 212

CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60

Cs₂CuCl₄, high-pressure studies by X-ray diffraction, 153, 212

 $\alpha\text{-}$ and $\beta\text{-}[Cu_2Cl(C_5H_3N_2O_2)_2(H_2O)],$ synthesis and characterization, 152, 174

Cu(OH)Cl, synthesis and crystal structure, relationship to brucite type, 151, 308

divalent transition metal chlorides, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113

Hg₆As₄BiCl₇ built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, **154**, 350

Ni(NH₃)₂Cl₂, preparation and crystal structures, 152, 381

PbCl₂, inert pair effects: crystal structure of SnBr₂, 149, 28

Pb₇F₁₂Cl₂, disordered modification of, synthesis and structure, **149**, 56 SnCl₂, inert pair effects: crystal structure of SnBr₂, **149**, 28

TaCl₆ and TaOCl₃, compound with intercalated graphite, structural analysis with molecular simulations, **149**, 68

{V₁₈O₄₂(ClO₄)}, extended solids composed of, synthesis, structure, and physicochemical properties, **152**, 105

[Zn-Al-Cl] layered double hydroxide, thermally treated, X-ray diffraction pattern simulation, 152, 568

Chromate

Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332

Chromaticity diagram

CaIn2O4 phosphors activated by Pr, 155, 441

ZnGa₂O₄ self-activated phosphors with Cd²⁺ substitution for Zn²⁺, **150,** 204

Chromium

Bi₁₄CrO₂₄, crystal structure, **149**, 209

CdCr₂S₄ and CdCr₂Se₄ spinels, electronic band structure, 155, 198

Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, 152, 526

 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, synthesis and analysis, **154**, 45

Cr ions in rutile TiO₂, redox properties, XRD and EPR study, 152, 412

 $(Cr_{1-x}Ni_x)_3Te_4$ with pseudo-NiAs-type structure, magnetic properties, **154**, 356

(CrO₄)²⁻ and (Cr₂O₇)²⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332

(Hg,Cr)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488

intercalation compounds of anionic oxalato complexes with layered double hydroxides. 153, 301

(La_{1-x}Ca_x)CrO₃, chemical and thermal expansion, **149**, 320

LaCrO₃, structural phase transition, neutron powder diffraction study, 154, 524

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, 155, 280

La_{0.5}Pr_{0.5}CrO₃, magnetization reversal, **155**, 447

 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, structural characterization, 155,

 Mo_2NiB_2 boride base cements with Cr additions, mechanical properties and structure, effects of Mo/B atomic ratio, 154, 263

Pb₅Al_{2.96}Cr_{0.04}F₁₉, ferroelastic phase, crystal structure at 300 K, **155**,

 β -rhombohedral boron doped with, thermoelectric properties, **154**, 13 Sr₂CrMoO₆ double perovskite, magnetoresistance, **155**, 233

Sr_{4.5}Cr_{2.5}O₉, magnetic properties, **154**, 375

Circular dichroism spectroscopy

magnetic, analysis of magnetic order in $Pr_{1-x}Ba_xCoO_3$ perovskite, **152**, 577

Clathrates

 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x = 2) with p-type thermoelectric cage structure, synthesis and characterization, 151, 61

 $Ba_6Ge_{25-x},\ Ba_6Ge_{23}Sn_2,$ and $Ba_6Ge_{22}In_3,$ structure and thermoelectric properties, 153, 321

Ba₂₄Ge₁₀₀, preparation and structure, **151**, 117

group 14 with alkali metals, synthesis and characterization, **153**, 92 potential as thermoelectric materials, **149**, 455

CMR effect, see Colossal magnetoresistance

Cobalt

Ba₂CoNbO₆ perovskite, magnetic transition in, **151**, 294

Ba₈Co₇O₂₁, synthesis and structure, **151**, 77

 $BaIr_{1-x}Co_xO_{3-\delta}$ (x = 0.5,0.7,0.8) perovskites, structural chemistry and electronic properties, **152**, 361

(R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180

 RCo_4B (R = Y,Pr,Nd,Sm,Gd,Tb), magnetic properties, 154, 242

Co₇₇B₂₃ amorphous alloy, crystallization mechanism, 154, 145

[Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280

CoCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113

Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, 152, 526

Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143

Co₂P, solvothermal synthesis, 149, 88

Co_{0.844}Se nanocrystals, synthesis in nonaqueous solvent, **152**, 537

Cs₂CoCl₄, high-pressure studies by X-ray diffraction, 153, 212

CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60

Dy₆CoTe₂, synthesis, structure, and bonding, 155, 9

LaCoO₃-LaMnO₃-BaCoO₂-BaMnO₃ system, phase equilibria, 153, 205

LiFe_{1-x}Co_xO₂ ($0 \le x \le 1$), Co in, effect on magnetic properties, **154**, 451

mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes. **152.** 21

 $Na_4Co_3H_2(PO_4)_4 \cdot 8H_2O$, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292

Nd₄Co₃O_{10+δ}, crystal structure and properties, **151**, 46

NiCo₂O₄, XRD, XANES, EXAFS, and XPS study, 153, 74

Pr_{1-x}Ba_xCoO₃ perovskite, magnetic order, magnetic circular dichroism spectroscopic study, 152, 577

 Pr_2O_3 -Co- Co_2O_3 system, thermogravimetric study at 1100 and 1150°C, **151**, 12

 β -rhombohedral boron doped with, thermoelectric properties, **154**, 13 SmNi_{1-x}Co_xO₃, structure, relationship to physical properties, **150**, 145

 $TICo_{2-x}Cu_xSe_2$ ($x \sim 1$) system, incommensurate Cu/Co ordering in, 151, 260

zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions $R_4\mathrm{N}^+$ ($R=n\mathrm{Pr},n\mathrm{Bu},n\mathrm{Pen}$) as structure directors for, **152**, 286

 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107

Color

CrVI-doped Bi₂O₃ phases, 149, 209

Colossal magnetoresistance

CaMnO₃ doped at Mn sites, 149, 203

origin in manganites, 155, 116

Composite electrolytes

Na₂SO₄-Al₂O₃, ionic conductivity, mechanism and role of preparatory parameters, **153**, 287

Compressibility

 $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq$ 1) mixed perovskites, high-pressure Raman study, **149**, 298

Ba₄Ru₃O₁₀, **149**, 137

BN, 154, 280

Conductivity, see also specific type

Bi_{0.775}La_{0.225}O_{1.5} of rhombohedral Bi-Sr-O type, optimization by polycationic substitutions for La, 149, 341

Na₂SO₄, enhancement, review and current developments, **155**, 154 Coordination polymers

Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure, **152**, 247

Ag(I)-hexamethylenetetramine complexes, self-assembly and supramolecular interactions, 152, 211

alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271

 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236

Cu(I)-Cu(II), two- and three-dimensional, synthesis and characterization, 152, 174

with 4,4'-dipyridyldisulfide, synthesis and structure, 152, 113

inorganic-organic, generated from rigid or flexible bidentate ligands and Co(NCS)₂·xH₂O, **155**, 143

ladder-like Cu(II) polymers, self-assembly, structures, and magnetic properties, 152, 183

metal-ion, porphyrin-based microporous materials, 152, 87

neutral molecular railroad, incorporating polycyclic aromatic molecules, synthesis and crystal structure, **152**, 280

pillared 3D Mn(II) network with rectangular channels, synthesis, X-ray structure, and magnetic properties, **152**, 152

sodium propynoate polymers, formation induced by gamma radiation and structure, **152**, 99

tetrapyridylporphyrin, polymorphous one-dimensional, structural mimicry of aryl stacking interactions, **152**, 253

Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and polyphenolic 2D motifs, synthesis and characterization, **152**, 130

Copper

alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271

AlSr₂YCu₂O₇, crystal growth and structure, 149, 256

 $Ba_4Er_2Cu_7O_{15-\delta}$, structural effects of Au and Al incorporation, **150**, 228 $A_3Bi_5Cu_2S_{10}$ (A = Rb,Cs), structure and conductivity, **155**, 243

CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent Raman study, **154**, 338

Ca_{4.78}Cu₆O_{11.60}, crystal structure, **151**, 170

Ca_{3.1}Cu_{0.9}RuO₆, synthesis, structural chemistry, and magnetic properties, 153, 254

Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties,

Cs₂CuCl₄, high-pressure studies by X-ray diffraction, 153, 212

Cs₂CuP₃S₉, chiral compound with chiral screw helices, preparation, structure, and characterization, **151**, 326

 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174

CuCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113

Cu(I)-Cu(II) coordination polymers, two- and three-dimensional, synthesis and characterization, 152, 174

Cu(II) dicarboxylates, microporous materials, synthesis and gas occlusion properties, 152, 120

 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, synthesis and structure, **150**, 159

Cu₂FeSn₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363

Cu₂FeTi₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363

Cu₂Gd_{2/3}S₂, crystal structure: interlayer short-range order of Gd vacancies, 152, 332

CuInO₂ delafossite-type oxide, synthesis, 151, 16

Cu(II) ladder-like coordination polymers, self-assembly, structures, and magnetic properties, 152, 183

Cu_{0.5}Mn_{0.25}Zr₂(PO₄)₃ Nasicon-type phosphate, structure and luminescence, **152**, 453

Cu₄Nb₅Si₄, bonding analysis, 154, 384

 $Ln_{1.85}^{3.4}M_{0.15}^{2+}$ CuO₄ superconductors, true tolerance factor effects in, 155,

Cu(OH)Cl, synthesis and crystal structure, relationship to brucite type, 151, 308

Cu₃P, solvothermal synthesis, 149, 88

 $(RE_{m+n})(Cu_2P_3)_m(Cu_4P_2)_n$, relationship to other rhombohedral rare earth copper phosphides, **151**, 150

Cu-phenanthroline complexes, functionalized MCM-41 containing, synthesis and characterization, **152**, 447

Cu₂SnS₃ nanocrystals, synthesis, characterization, and properties, **153**, 170

 Cu_{2-x} Te, preparation by microwave heating, 154, 530

ACu₃Ti₃FeO₁₂, dielectric constants, **151**, 323

ACu₃Ti₄O₁₂, dielectric constants, **151**, 323

[Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141

 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies, **150**, 188

GdCuAs₂, symmetry-breaking transitions through GdCuAs_{1.15}P_{0.85} to GdCuP_{2.20}, **155**, 259

(Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z, 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

 $\text{Ho}_2\text{Cu}_{6-x}\text{P}_{5-y}$, crystal structure and $(RE_{m+n})(\text{Cu}_2\text{P}_3)_m(\text{Cu}_4\text{P}_2)_n$ relationship to other rhombohedral rare earth copper phosphides, **151**, 150

intercalation compounds of anionic oxalato complexes with layered double hydroxides, **153**, 301

KBi₂CuS₄, structure and conductivity, 155, 243

KCuF₃ and K₂CuF₄, extended magnetic solids, spin exchange interactions in, 151, 96

LaBaCuGaO₅, phase transition induced by high pressure, **155**, 372 La₂CuO₄, extended magnetic solids, spin exchange interactions in, **151**,

 $La_5Cu_6O_4S_7$, synthesis, structure, electrical conductivity, and band structure, 155, 366

 $La_{2-x}Nd_xCuO_4$ (0.6 $\leq x \leq$ 2), pressure-induced phase transitions, **151**,

 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, synthesis and crystal structure, **149**, 189

 $\mathrm{Nd_2CuO_4}$, extended magnetic solids, spin exchange interactions in, 151, 96

 $NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11-\delta}$ and $NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}$ $O_{14-\delta}$, defect chemistry and electrical properties, **155**, 216

Ni_{1-x}Cu_xFeAlO₄, Mössbauer effect study, **149**, 434

Pr₂CuO₄, pressure-induced phase transitions, 151, 231

 $RbLn_2CuSe_4$ (Ln = Sm,Gd,Dy), synthesis and structures, 151, 317

 $Rb_{1.5}Ln_2Cu_{2.5}Se_5$ (Ln = Gd,Dy), synthesis and structure, **151**, 317

 $\rm Sr_2CuMnO_3S$ and $\rm Sr_4Cu_2Mn_3O_{7.5}\it Q_2$ (Q = S,Se), synthesis and structure, 153, 26

SrO-Ho₂O₃-CuO_x system, phase relations, **149**, 333

 $TICo_{2-x}Cu_xSe_2$ ($x \sim 1$) system, incommensurate Cu/Co ordering in, 151, 260

Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, **153**, 106

Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO₃, superstructure derived from, X-ray and neutronpowder diffraction, **155**, 22

 $YBa_2Cu_4O_8$ superconductor, HRTEM surface profile imaging, 149, 327

Copper(II) terephthalate

microporous materials, synthesis and gas occlusion properties, **152**, 120 Counterions

NCS⁻ and PF₆, role in anomalous spin crossover of mechanically strained Fe(II)–1,10-phenanthroline complexes, **153**, 82

Covalent-metallic bonding conversion

 β -rhombohedral boron doped with metal, **154**, 13

Cryolite

cryolite-alumina melt, TiB₂ in, chemical and electrochemical behavior, **154**, 107

Crystal chemistry

 α -AlB₁₂ and γ -AlB₁₂, **154**, 168

Ca₂Ta₂O₇-Sm₂Ti₂O₇ system polytypes, **150**, 167

 $Cd_{1-\delta}Mn_2O_y$, Mn-K edge XAS study, **149**, 252

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, **155**, 280

oxygen/fluorine ordering in rutile-type FeOF, 155, 359

 $\mathrm{Sm^{2+}}$ in $\mathrm{SmSO_4}$ and solid solutions of $M_{1-x}\mathrm{Sm_xSO_4}$ ($M=\mathrm{Ba,Sr}$), 154, 535

Crystal growth

AlSr₂YCu₂O₇, **149**, 256

BaBi₃O_{5.5}, **152**, 435

complex perovskites, mechanical activation, 154, 321

 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, **154**, 45 organic supramolecular materials, polarity formation in, **152**, 49

Sc₂AlB₆, **154**, 49

UNi_{1.9}Sn single crystals, **149**, 120

 $(VO)_2P_2O_7$ at 3 GPa, **153**, 124

 $(Y,RE)Al_3(BO_3)_4$ solid solutions (RE = Nd,Gd,Ho,Yb,Lu), 154, 317 Crystallinity

BN, effect of molecular precursor structure, 154, 137

Crystallization

amorphous boron: production of α -rhombohedral boron, **154**, 199

borosilicates, 154, 312

Co₇₇B₂₃ amorphous alloy, mechanism, **154**, 145

eutectic, LaB₆-(Ti,Zr)B₂ alloys, 154, 165

Crystal structure

Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, molecular and extended complexes, **152**, 247

 $Ag_2NbTi_3P_6S_{25}$, 153, 55

Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, 152, 159

AgTi₂(PS₄)₃, 153, 55

AlSr₂YCu₂O₇, 149, 256

BaBi₃O_{5,5}, **152**, 435

 $BaMBO_3F_2$ (M = Ga,Al), **155**, 354

 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), **149**, 384

Ba₂CoNbO₆ perovskite, 151, 294

Ba₈Co₇O₂₁, 151, 77

 $Ba_4Er_2Cu_7O_{15-\delta}$, structural effects of Au and Al incorporation, **150**, 228 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2), p-type thermoelectric cage structure,

 $Ga_{16}(Gaso)_x Ge_{30-2x}$ (x=2), p-type thermoelectric cage structing 151, 61

Ba₆Ge_{25-x}, **153**, 321

Ba₂₄Ge₁₀₀, **151**, 117

Ba₆Ge₂₂In₃, **153**, 321

Ba₆Ge₂₃Sn₂, **153**, 321

 $BaHf_{1-x}Zr_x(PO_4)_2$ emitting ultraviolet under X-ray excitation, **155**, 229

BaIr_{1-x}Co_xO_{3- δ} perovskites (x = 0.5,0.7,0.8), **152**, 361

BaLaMRuO₆ (M = Mg,Zn), **150**, 383

 $BaLn_2MnS_5$ (*Ln* = La,Ce,Pr), **153**, 330

Ba₄Nd₂Cd₃Se₁₀, **149**, 384

BaRuO₃, derivation from bond valence analysis, 151, 245

Ba₄Ru₃O₁₀, **149**, 137

Ba₃SiI₂, **152**, 460

BaSm₄(SiO₄)₃Se, 155, 433

Ba_{1+x}V₈O₂₁ bronze with tunnel structure, **150**, 330

 $Ba_6[V_{10}O_{30}(H_2O)] \cdot 2.5H_2O$ with unusual arrangement of V^{IV} -O polyhedra, **151**, 130

Ba₂YbTaO₆, ordered perovskite structure, 150, 31

N-benzyl piperidinium dihydrogenmonophosphate, 155, 298

Bi₁₄CrO₂₄, **149**, 209

 $A_3 \text{Bi}_5 \text{Cu}_2 \text{S}_{10} \ (A = \text{Rb,Cs}), 155, 243$

BiMg₂VO₆, variable-temperature X-ray diffraction study, **149**, 143

Bi₂Nd₄O₉ monoclinic phase, **153**, 30

BiSeO₃Cl, 149, 236

1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi–Sr ordering, **151**, 210

BiZn₂PO₆, 153, 48

boron-rich crystal geometry, effect on lattice dynamics, 154, 20

borosilicates, 154, 312

CaAl₁₂Si₄O₂₇ high-pressure phase with Al₆O₁₉ clusters, **153**, 391 KMQ_2 (M = Al,Ga; Q = Se,Te) chalcogenides with stacking faults, 149, Ca_{4.78}Cu₆O_{11.60}, **151**, 170 Ca_{3.1}Cu_{0.9}RuO₆, 153, 254 KBi₂CuS₄, **155**, 243 KCa₂Nb₃O₁₀ layered perovskite, 151, 40 CaErPt₃Sn₅, Yb₂Pt₃Sn₅-type structure, **150**, 112 CaLuPt₃Sn₅, Yb₂Pt₃Sn₅-type structure, **150**, 112 K₃Hg₁₁, **149**, 419 CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, **154**, 483 carbonate apatite with A-site substitutions, X-ray diffraction study, 155, La₃Al_{0.44}Si_{0.93}S₇, **155**, 433 Ca₆Sm₂Na₂(PO₄)₆F₂, 149, 308 La₅Cu₆O₄S₇, 155, 366 Ca₂Ta₂O₇-Sm₂Ti₂O₇ system polytypes, **150**, 167 CaTmPt₃Sn₅, Yb₂Pt₃Sn₅-type structure, **150**, 112 $La_{\sim 10.8}Nb_5O_{20}S_{10}$, 152, 348 CaYbPt₃Sn₅, Yb₂Pt₃Sn₅-type structure, **150**, 112 La₅Re₃MnO₁₆, **151**, 31 Cd(OH)Cl, 151, 308 La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈, **155**, 189 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], **152**, 236 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, **149**, 189 Cd₅(PO₄)₃Br and Cd₅(PO₄)₃I, incommensurate modulation, 150, 154 Ce2Ni2Cd, 150, 139 (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂ one-dimensional cobalt phosphate, 153, metry, 151, 139 (CH₃NH₃)₃Bi₂Cl₉ at low temperature, 155, 286 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, **155**, 409 LaTe₂, **149**, 155 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, 154, 514 LaVO₄, 152, 486 $(C_2H_{10}N_2)[Ni(H_2O)_6](HPO_4)_2$, 154, 460 LaV₃O₉, 152, 486 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, 154, 514 LiH₅TeO₆, 150, 410 $[C_2N_2H_{10}]_2Fe_5F_4(PO_4)(HPO_4)_6$, 154, 507 RCo_4B (R = Y,Pr,Nd,Sm,Gd,Tb), **154**, 242 [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, 152, 280 coordination polymers with 4,4'-dipyridyldisulfide, 152, 113 Na_{0.5}Pb_{1.75}GeS₄, **153**, 158 Cs₇Au₅O₂, 155, 29 Cs₂CuP₃S₉, chiral compound with chiral screw helices, 151, 326 β -LiVOAsO₄, **150**, 250 Cs₅Hg₁₉, **149**, 419 MgOs₃B₄, channel structure, 154, 232 Cs₂KMnF₆, low- and high-temperature modifications, 150, 399 Cs₃Mg₂P₆O₁₇N, **153**, 185 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), **152**, 174 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, 150, 159 Cu₂Gd_{2/3}S₂, interlayer short-range order of Gd vacancies, 152, 332 CuInO₂ delafossite-type oxide, **151**, 16 Cu(II) ladder-like coordination polymers, 152, 183 ates and SiP₂O₇, 154, 344 $Cu_{0.5}^{I}Mn_{0.25}^{II}Zr_{2}(PO_{4})_{3}$ Nasicon-type phosphate, 152, 453 $Na_3[B_6O_9(VO_4)]$, 150, 342 Na₄Co₃H₂(PO₄)₄·8H₂O, **149**, 292 Cu(OH)Cl, 151, 308 [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, **152**, 141 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, 151, 122 1,2-dihydro-N-aryl-4,6-dimethylpyrimidin-2-ones: C-H···O and C-H···N Na_{3.64}Mg_{2.18}(P₂O₇)₂, **152**, 323 networks, 152, 221 N,N'-dimethylpiperazinium(2 +) selenate dihydrate, 150, 305 Na_{3.64}Ni_{2.18}(P₂O₇)₂, **152**, 323 Eu₁₆Bi₁₁, **155**, 168 Eu₁₆Sb₁₁, **155**, 168 Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 EuSn₃Sb₄ and related Zintl phases, 150, 371 extended solids composed of transition metal oxide clusters, 152, 105 Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 FeZn₁₀ and Fe₁₃Zn₃₉, 151, 85 NaSb₃O₂(PO₄)₂, 151, 21 $MGa_2B_2O_7$ (M = Sr,Ba), **154**, 598 GaPO₄, structural phase transformations, 149, 180 Na₂ZnP₂O₇, **152**, 466 GdCuAs₂, GdCuAs_{1.15}P_{0.85}, and GdCuP_{2.20}, 155, 259 $Nb_2N_{0.88}O_{0.12}$, 150, 36 $GdNi_3X_2$ (X = Al,Ga,Sn), relationship to synthesis conditions, 150, 62 M₅Ge₄ compounds in Ge-Ta-Zr system, relationship to composition, $Nd_4Co_3O_{10+\delta}$, **151**, 46 **150,** 347 $Nd_4Ni_3O_{10-\delta}$, **151**, 46 GeSe₂ three-dimensional crystals, transformations at high pressures and Nd₁₆Ti₅S₁₇O₁₇, **152**, 554 temperatures, 150, 121 A_3 Hg₂₀ (A =Rb,Cs) and A_7 Hg₃₁ (A =K,Rb), **149**, 419 CH_2NH_3 [$Co_2(HPO_4)_3$], 155, 62 Hg₆As₄BiCl₇, Hg₆Sb₄BiBr₇, and Hg₆Sb₅Br₇ built of polycationic mercury-pnictide framework with trapped anions, 154, 350 $Hg_3Se_2I_2$ and $Hg_3S_2I_2$, **151**, 73 $LnNiIn_2$ (Ln = Pr,Nd,Sm), **152**, 560 $\text{Ho}_2\text{Cu}_{6-x}\text{P}_{5-y}$, **151**, 150

In₄Sn₃O₁₂ substituted with Y and Ti, 153, 349

isoelectronically substituted (ZnO)₅In₂O₃, 150, 221

IrIn₂, 150, 19

K₂MnF₅·H₂O, neutron diffraction study, **150**, 104 LaB₆-(Ti,Zr)B₂ alloys prepared by eutectic crystallization, 154, 165 $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O (M = K,NH_4), 150, 81$ $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, 155, 455 $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_{3-\delta}\square_{\delta}$ (0 $\leq \delta \leq$ 0.15), effects of oxygen nonstoichio- $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, 153, Li-Mn-Fe-O spinels: computer modeling of Li ion distribution, 153, Li_{0.5}Pb_{1.75}GeS₄, isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Li₂Ti₃O₇, H phase, engineered scavenger compound, 152, 546 Mn₃Ga₅ pseudo-decagonal approximant, 153, 398 Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D incommensurate modulation, 152, 573 $RE_5Mo_{32}O_{54}$ (RE = La,Ce,Pr,Nd) with trans-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, 152, 403 $Na_2M_2(BO_3)_2O$ (M = Al,Ga), comparison with other layered oxybor-Na₃In(PO₄)₂ polymorphous modifications, 149, 99 Na_{0.5}Pb_{1.75}GeS₄, isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Na_{1.5}Pb_{0.75}PSe₄, isostructural relationship to Na_{0.5}Pb_{1.75}GeS₄ and $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, 154, 427 Nb₁₂O₂₉, correlation with electronic structure, **149**, 176 [NH₃CH₂CH(OH)CH₂NH₃][Co₂(PO₄)₂] and [NH₃CH₂CH(OH) $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), 155, 37 $R_2 \text{NiB}_{10}$ (R = Y,Ce-Nd,Sm,Gd-Ho), **154**, 246 $Ni_yMo_6Se_{8-x}S_x$ solid solution, **155**, 250 $Ni(NH_3)_2X_2$ (X = Cl,Br,I), **152**, 381 $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via different precursors, 151, 298

 α -Ni(VO₃)₂·2H₂O and Ni(VO₃)₂·4H₂O, **152**, 511

 $Tl_2Nb_2O_{6+x}$ phases with pyrochlore structure, 155, 225

```
Tl(Ln_2Sr_2)Ni_2O_9 (Ln = La,Pr,Nd,Sm,Eu,Gd), 150, 1
Pb<sub>5</sub>Al<sub>2.96</sub>Cr<sub>0.04</sub>F<sub>19</sub> at 300 K, 155, 427
Pb<sub>5</sub>Bi<sub>18</sub>P<sub>4</sub>O<sub>42</sub>, 151, 181
                                                                                                   TlTe, 149, 123
Pb<sub>7</sub>F<sub>12</sub>Cl<sub>2</sub>: disordered modification, 149, 56
                                                                                                   TlZn(PO<sub>3</sub>)<sub>3</sub>, 154, 584
[Pb<sub>6</sub>O<sub>4</sub>](OH)(NO<sub>3</sub>)(CO<sub>3</sub>), 153, 365
                                                                                                   UFe<sub>5</sub>Sn, 154, 551
LnPdGe (Ln = La-Nd,Sm,Gd,Tb), 154, 329
                                                                                                   UNi<sub>1.9</sub>Sn single crystals, 149, 120
                                                                                                   (UO_2)_3(VO_4)_2 \cdot 5H_2O, 150, 72
pillared 3D Mn(II) coordination network with rectangular channels,
                                                                                                   M_6(UO_2)_5(VO_4)_2O_5 (M = Na,K), 155, 342
      152, 152
piperazinium(2+) selenate monohydrate, 150, 305
                                                                                                   (V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\}\cdot 2H_2O, 155, 238
RP_5O_{14} (R = La,Nd,Sm,Eu,Gd), 150, 377
                                                                                                   (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> phase grown at 3 GPa, 153, 124
polymeric Ag(I)-hexamethylenetetramine complexes, 152, 211
                                                                                                   Ln_7VO_4Se_8 (Ln = Nd,Sm,Gd), 154, 564
(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O(X = S,Se; M = Mn,Ni), 153, 195
                                                                                                   \{[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]\}_n, 151, 286
(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6] (M = Mn,Ni), 153, 195
                                                                                                   \{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n, 151, 286
                                                                                                   \{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n, 151, 286
PrRhIn, 152, 560
Pr_{1-x}Sr_xFeO_{3-\delta}, 150, 233
                                                                                                   W_2O_3 \cdot P_2O_7 with empty tunnel structure, 155, 112
rare-earth-rich ternary pnictides RE_5M_2X (RE = Y,Gd,Tb,Dy,Ho,
                                                                                                   (Y,RE)Al_3(BO_3)_4 solid solutions (RE = Nd,Gd,Ho,Yb,Lu), 154, 317
      Er, Tm, Lu; M = \text{Ni,Pd}; X = \text{Sb,Bi}), 152, 478
                                                                                                   Yb<sub>5</sub>In<sub>2</sub>Sb<sub>6</sub> Zintl phase with narrow band gap, 155, 55
Rb<sub>5</sub>Au<sub>3</sub>O<sub>2</sub> and Rb<sub>7</sub>Au<sub>5</sub>O<sub>2</sub>, 155, 29
                                                                                                   zeolite-like heterobimetallic cyanide frameworks with quaternary ions
Rb_2[B_4O_5(OH)_4] \cdot 3.6H_2O, 149, 197
                                                                                                         R_4N^+ (R = nPr, nBu, nPen) as structure directors, 152, 286
                                                                                                   Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12} (x \cong 0.05) with 12 rings, 149, 107
RbLn_2CuSe_4 (Ln = Sm,Gd,Dy), 151, 317
Rb_{1.5}Ln_2Cu_{2.5}Se_5 (Ln = Gd,Dy), 151, 317
                                                                                                   Zn_4(PO_4)_2(HPO_4)_2 \cdot 0.5(C_{10}H_{28}N_4) \cdot 2H_2O, 154, 368
Rb<sub>2</sub>(HSO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) and Rb<sub>4</sub>(HSO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>), X-ray single crystal and
                                                                                                   ZrIn<sub>2</sub>, 150, 19
      neutron powder diffraction studies, 149, 9
                                                                                                   ZrM(OH)_2(NO_3)_3 (M = K,Rb), ab initio determination from X-ray pow-
Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2}) (n = 1 to 4) superconducting cluster com-
                                                                                                         der diffraction, 149, 167
      pounds, 155, 417
                                                                                                   ZrPOF-n family zirconium phosphate fluorides with 2D and 3D struc-
Rb<sub>2</sub>Sb<sub>8</sub>S<sub>13</sub>·3.3H<sub>2</sub>O, 155, 409
                                                                                                         ture types, 149, 21
RbSm<sub>2</sub>Ag<sub>3</sub>Se<sub>5</sub>, 151, 317
                                                                                                Cyclohexaphosphates
Sb<sub>5</sub>PO<sub>10</sub>, 155, 451
                                                                                                   Cs<sub>3</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>17</sub>N, synthesis and crystal structure, 153, 185
Sc<sub>2</sub>AlB<sub>6</sub>, 154, 49
                                                                                                                                              D
ScOs<sub>3</sub>B<sub>4</sub>, channel structure, 154, 232
seven-coordinated diaguasuccinatocadmium(II) bidimensional polymer,
                                                                                                DC sputtering
                                                                                                   ZnO and In<sub>2</sub>O<sub>3</sub> or ITO targets, films deposited by, structures and
Ln_2(SiO_4)Te (Ln = Nd,Sm), monoclinic and orthorhombic crystals, 155,
                                                                                                         physical properties, 155, 312
SmNi_{1-x}Co_xO_3, relationship to physical properties, 150, 145
                                                                                                Debye temperature
SnBr<sub>2</sub>, 149, 28
                                                                                                   B_{12}P_2 wafers, 154, 33
SrAl<sub>2</sub>B<sub>2</sub>O<sub>7</sub>, 150, 404
                                                                                                Decomposition temperature
Sr<sub>1,25</sub>Bi<sub>0,75</sub>O<sub>3</sub>, determination as function of temperature from synchro-
                                                                                                   CaRh<sub>2</sub>O<sub>4</sub>, 150, 213
      tron X-ray powder diffraction data, 150, 316
                                                                                                Defect chemistry
                                                                                                   NdDyBa_{2-x}Sr_{x}Cu_{2+y}Ti_{2-y}O_{11-\delta}
                                                                                                                                                               NdDyCaBa_{2-x}Sr_xCu_{2+y}
SrC<sub>2</sub>, 151, 111
                                                                                                                                                    and
Sr_nFe_nO_{3n-1} (n=2,4,8,\infty), oxygen-vacancy-ordered perovskites, evolu-
                                                                                                         Ti_{3-\nu}O_{14-\delta}, 155, 216
      tion and relationship to electronic and magnetic properties, 151, 190
                                                                                                Dehydration
Sr<sub>4</sub>Fe<sub>2</sub>O<sub>6</sub>CO<sub>3</sub>, 152, 374
                                                                                                   topochemical, Ruddlesden-Popper tantalates and titanotantalates,
β-SrGa<sub>2</sub>O<sub>4</sub> and ABW-type γ-SrGa<sub>2</sub>O<sub>4</sub>, framework structures, 153, 294
                                                                                                         155, 46
γ-SrHPO<sub>4</sub>, 152, 428
                                                                                                Delafossite
Sr<sub>0.4</sub>K<sub>0.6</sub>BiO<sub>3</sub>, determination as function of temperature from synchro-
                                                                                                   related CuInO<sub>2</sub>, synthesis, 151, 16
      tron X-ray powder diffraction, 150, 316
                                                                                                Delithiation
                                                                                                   partial acid delithiation effects on electrochemical insertion properties of
Sr<sub>3.75</sub>K<sub>1.75</sub>Bi<sub>3</sub>O<sub>12</sub>, 152, 492
Sr<sub>3.1</sub>Na<sub>2.9</sub>Bi<sub>3</sub>O<sub>12</sub>, 152, 492
                                                                                                         Ni-stabilized LiMn<sub>2</sub>O<sub>4</sub> spinel oxides, 150, 196
Sr<sub>2</sub>NiN<sub>2</sub>, 154, 542
                                                                                                Density functional theory
Sr_{11}Re_4O_{24} double oxide, 149, 49
                                                                                                   R_5B_2C_5 (R = Y,Ce-Tm), 154, 286
Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>, distortions in, neutron diffraction study, 154, 361
                                                                                                   clathrates: potential as thermoelectric materials, 149, 455
Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19} (x = 0.87), 152, 540
                                                                                                   A_2T_2Sn (A = Ce,U; T = Ni,Pd): band magnetism calculations, 149, 449
Sr<sub>2</sub>Sn(OH)<sub>8</sub>, 151, 56
                                                                                                Deuterium
SrV<sub>4</sub>O<sub>9</sub> in metastable state, 149, 414
                                                                                                   CsCo(ND<sub>3</sub>)<sub>6</sub>(ClO<sub>4</sub>)<sub>2</sub>Cl<sub>2</sub>, orientational disordering, single crystal neu-
superconductors of 2212 type in Tl-Hg-Ba-Sr-Ca-Cu-O system, XRD
                                                                                                         tron diffraction study between 20 and 290 K, 149, 60
      studies, 153, 106
                                                                                                   YMn<sub>2</sub>D<sub>1,15</sub>, structural and magnetic properties, 154, 398
tantalum chloride-graphite intercalation compound, analysis with mo-
                                                                                                   YMn<sub>2</sub>D<sub>2</sub> single phase, synthesis, study by in situ neutron diffraction,
      lecular simulations, 149, 68
                                                                                                         150, 183
Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and poly-
                                                                                                Diamagnetism
      phenolic 2D motifs, 152, 130
                                                                                                   Hg<sub>6</sub>As<sub>4</sub>BiCl<sub>7</sub>, Hg<sub>6</sub>Sb<sub>4</sub>BiBr<sub>7</sub>, and Hg<sub>6</sub>Sb<sub>5</sub>Br<sub>7</sub>, 154, 350
Ti<sub>3</sub>NiAl<sub>2</sub>N, 155, 71
                                                                                                Diamines
Ti<sub>3</sub>Rh<sub>2</sub>In<sub>3</sub>, 150, 19
                                                                                                   intercalation compounds of SnS<sub>2</sub> single crystals, synthesis and character-
TIF, 150, 266
                                                                                                         ization, 150, 391
```

and 5-nitrosalicylaldehyde, Schiff base ligands derived from, mechanochemical reaction with polymeric oxovanadium(IV) complexes, 153, 9

trans-1,4-Diaminocyclohexane

 $[amH_2]_{0.5}[Zr_2(PO_4)(HPO_4)_2F_2] \cdot 0.5H_2O$ and $[amH_2]_{1.5}$ $[Zr_3(PO_4)_3F_6] \cdot 1.5H_2O$, with 2D and 3D structures, synthesis and crystal structures, **149**, 21

1,3-Diaminopropane

 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, 155, 37

Diaquasuccinatocadmium(II)

seven-coordinated bidimensional polymer, crystal structure structure and vibrational and thermal behavior, **153**, 1

Dichromate

Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332

Dielectric constant

ACu₃Ti₄O₁₂ and ACu₃Ti₃FeO₁₂, **151**, 323

Dielectric properties

BaTiO₃, effects of flux additions, 155, 86

N-benzyl piperidinium dihydrogenmonophosphate, **155**, 298 BiSeO₃Cl, **149**, 236

C.O. Al O. NIL O.

CaO: Al₂O₃: Nb₂O₅ system, **155**, 78

Differential scanning calorimetry

Sr(OH)Br, analysis of hydroxide ion disorder, 151, 267

Differential thermal analysis

Cs₂CuP₃S₉, chiral compound with chiral screw helices, 151, 326

1,2-Dihydro-N-aryl-4,6-dimethylpyrimidin-2-ones

crystal structures, C-H···O and C-H···N networks in, 152, 221

Dimethylamine

intercalation into TiS2, 155, 326

2,2-Dimethyl-1,3-diaminopropane

[amH₂]_{0.5}[Zr₃(PO₄)₃(HPO₄)F₂]·1.5H₂O, with 2D and 3D structure types, synthesis and crystal structures, **149**, 21

N,N'-Dimethylpiperazinium(2+) selenate dihydrate

crystal structure, vibrational spectra, and thermal behavior, **150**, 305 Diols

C₄, intercalates with vanadyl and niobyl phosphates, preparation and characterization, **151**, 225

Dion-Jacobson niobates

KCa₂Nb₃O₁₀ layered perovskite, crystal structure, **151**, 40

4,4'-Dipyridyldisulfide

coordination polymers with, synthesis and structure, 152, 113

Disorder

anions in $Eu_3(BO_3)_2F_3$, evidence from Eu^{3+} luminescence: comparison with $Ba_2Eu(CO_3)_2F_3$, **153**, 270

cation anti-site, rare earth oxide pyrochlores, 153, 16

cations in three-layer Aurivillius phases, 153, 66

M₅Ge₄ compounds in Ge-Ta-Zr system, 150, 347

hydroxide ions of Sr(OH)Br, 151, 267

Dissociation energy

graphite monofluoride, analysis with 3D cyclic cluster approach, 150, 286

Distortions

 \vec{q} and $2\vec{q}$ distortions in incommensurately modulated low-temperature structure of NiTa₂Se₇, **153**, 152

1,10-Dithia-18-crown-6

alkali cation ligating iodocuprate(I)-based coordination networks with, **152**, 271

Dynamic shear modulus

Fe-doped boron, 154, 188

Dysprosium

 Dy_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bonding, **152**, 478

DyB₆, magnetic entropy, **154**, 275

Dy_{2/3}Cu₃Ti₄O₁₂, dielectric constant, 151, 323

Dy₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties. 154, 246

 Dy_6MTe_2 (M = Fe,Co,Ni), synthesis, structure, and bonding, 155, 9

(Hg,M)Sr₂(Dy,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11- δ} and NdDyCaBa_{2-x}Sr_xCu_{2+y} Ti_{3-y}O_{14- δ}, defect chemistry and electrical properties, **155**, 216

RbDy₂CuSe₄, synthesis and structures, 151, 317

Rb_{1.5}Dy₂Cu_{2.5}Se₅, synthesis and structure, **151**, 317

site preference in hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂], 149, 391

Ε

Editorial, 149, 1

Electrical conductivity

 Ba_6Ge_{25-x} , $Ba_6Ge_{23}Sn_2$, and $Ba_6Ge_{22}In_3$, 153, 321

 $A_3 \text{Bi}_5 \text{Cu}_2 \text{S}_{10} \ (A = \text{Rb}, \text{Cs}), \ 155, \ 243$

 $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$ ceramics, effect of particle size, 155, 273

boron and boron phosphide films, 154, 26

B₁₂P₂ wafers, 154, 33

B-Si thin film prepared by pulsed laser deposition, 154, 141

CeVO₄, Ce_{1-x}MVO_{4-0.5x} (M = Ca,Sr,Pb), and Ce_{1-y}Bi_yVO₄ with zircon-type structure prepared by solid-state reaction in air, **153**, 174

 $t'_{meta}\text{-}(Ce_{0.5}Zr_{0.5})O_2$ phase prepared by reduction and successive oxidation of t' phase, 151, 253

Cu₂SnS₃ nanocrystals, 153, 170

graphite monofluoride, analysis with 3D cyclic cluster approach, 150, 286

In₄Sn₃O₁₂ substituted with Y and Ti, 153, 349

IrIn₂, 150, 19

KBi₂CuS₄, **155**, 243

La₅Cu₆O₄S₇, **155**, 366

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, **155**, 280

Mg-Fe-O system, 149, 33

 β -rhombohedral boron doped with metal, **154**, 13

Sr(OH)Br, analysis of hydroxide ion disorder, 151, 267

Ti₃Rh₂In₃, **150**, 19

Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55

ZrIn₂, 150, 19

Electrical properties

 $B_{12}P_2$ wafers, **154**, 33

 $(Cd_{1-x}Mn_x)Mn_2O_4$, **153**, 231

GdCuAs₂, GdCuAs_{1,15}P_{0,85}, and GdCuP_{2,20}, **155**, 259

GdNi $_3X_2$ (X = Al,Ga,Sn), relationship to synthesis conditions, **150**, 62 In $_2O_3$ – M_2O_3 (M = Y,Sc) solid solutions doped with Sn, **153**, 41

 $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_{3-\delta}\square_{\delta}~(0\leq\delta\leq0.15)$, effects of oxygen nonstoichiometry. **151**, 139

 $RE_5\text{Mo}_{32}\text{O}_{54}$ (RE = La,Ce,Pr,Nd) with trans-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, **152**, 403

NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11- δ} and NdDyCaBa_{2-x}Sr_xCu_{2+y} Ti_{3-y}O_{14- δ}, **155**, 216

 $R_2 \text{NiB}_{10} \ (R = \text{Y,Ce-Nd,Sm,Gd-Ho}), 154, 246$

PrRhIn, 152, 560

 $SmNi_{1-x}Co_xO_3$, relationship to structure, **150**, 145

Sr₂NiN₂, **154**, 542

 $\{[W_4Ag_6S_{16}]\cdot [Ca(DEAC)_6]\}_n$, 151, 286

 ${[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]}_n$, 151, 286

 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n$, 151, 286

ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, **155**, 312 Electrical resistivity $Sr_nFe_nO_{3n-1}$ (n = 2,4,8, ∞), oxygen-vacancy-ordered perovskites, rela- $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), **152**, 474 tionship to crystal structure, 151, 190 Ce2Ni2Cd, 150, 139 Electronic structure $R_5B_2C_5$ (R = Y,Ce-Tm), **154,** 286 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, 154, 45 EuSn₃Sb₄ and related Zintl phases, 150, 371 CdCr₂S₄ and CdCr₂Se₄ spinels, 155, 198 $La_{n+1}Ni_nO_{3n+1}$ (n = 2,3), **152**, 517 $FeZn_{10}$ and $Fe_{13}Zn_{39}$, **151**, 85 Na₂Ti₂Sb₂O, relationship to structure, powder neutron diffraction GdCuAs₂, GdCuAs_{1.15}P_{0.85}, and GdCuP_{2.20}, **155**, 259 graphite monofluoride, analysis with 3D cyclic cluster approach, 150, study, 153, 275 Nd_{1-x}TiO₃ perovskites, 155, 177 $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via dif-K_{1.8}Mo₉S₁₁, 155, 124 ferent precursors, 151, 298 LaTe₂, 149, 155 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n = 1 to 4) superconducting cluster com- $A_2\text{Mo}_9\text{S}_{11}$ (A = K, Nb), **155**, 124 pounds, 155, 417 Nb₁₂O₂₉, coexistence of localized and delocalized electrons, **149**, 176 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, 153, 140 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n = 1 to 4) superconducting cluster com- $Sm_{1-x}TiO_3$ perovskites, 155, 177 pounds, 155, 417 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x = 1,1.5,2) Ruddlesden-Popper phases, 155, 96 three-coordinate organoboron compounds, 154, 5 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), **152**, 540 W₅As₄, **154**, 384 $Tl_2Nb_2O_{6+x}$ phases with pyrochlore structure, 155, 225 Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55 YB₄₁Si_{1.2}, **154**, 229 Electron microscopy, see also High-resolution electron microscopy; Trans-Electrochemical synthesis mission electron microscopy $M_{1-x} \text{Sm}_x \text{SO}_4 \ (M = \text{Ba,Sr}), 154, 535$ InSn oxide powders, 154, 444 paracrystal formation from Ni_{1-x}O and CaO upon interdiffusion, 152, Electrochemistry insertion properties of Ni-stabilized LiMn₂O₄ spinel oxides, effects of 421 Electron paramagnetic resonance partial acid delithiation, 150, 196 Li insertion into Mg₂Si, reaction mechanism, 153, 386 $La_{1-x}Eu_xNiO_3 \ (0 \le x \le 1), 151, 1$ Li_{2+x}Ti₃O₇ prepared by, structural study, **153**, 132 TiO₂ rutile solid solutions: redox behavior of VIB transition metal ions, β -LiVOAsO₄, **150**, 250 **152**, 412 (VO)₂P₂O₇ phase grown at 3 GPa, 153, 124 TiB₂ in cryolite-alumina melt and in molten aluminum, 154, 107 Electroluminescence Yb^{3+} doped in Ba_2LuTaO_6 , 150, 31 conjugated molecule doped in polymer, effect of excimer behavior, 153, Electron-phonon interaction β -rhombohedral boron doped with metal, **154**, 13 192 three-coordinate organoboron compounds, 154, 5 Electron probe microanalysis Electron diffraction quantitative, boron, 154, 177 Ba₈Co₇O₂₁, **151**, 77 Electrons, see also Lone pair electrons $(1 - x)Bi_2O_3 \cdot xCaO$ (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related counting in compounds structurally related to Ti₅Te₄, theoretical study, phases, 149, 218 154, 384 Cu₂Gd_{2/3}S₂: interlayer short-range order of Gd vacancies, 152, 332 delocalized and localized, coexistence in Nb₁₂O₂₉, 149, 176 $Li_{2+x}Ti_3O_7$ obtained electrochemically, **153**, 132 Electron transfer reactions Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D solvent equation of state near critical point for, spin-exchange term in, incommensurate modulation, 152, 573 **151,** 102 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, 154, 427 Elpasolite order-disorder phenomena in $SrMn_{1-y}(B,C)_yO_{3-\delta}$ perovskite-related Cs₂KMnF₆, high-pressure phase transition, 153, 248 oxyborocarbonates, 149, 226 Enthalpy-entropy compensation theory oxygen/fluorine ordering in rutile-type FeOF, 155, 359 carbon tetrachloride-neopentane system, 154, 390 selected area, Bi₂O₃-MoO₃ system: compounds with structure based on Entropy of formation Ca-Rh-O system, measurement, solid state cells with buffer electrodes $[Bi_{12}O_{14}]_{\infty}$ columns, **149**, 276 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$: charge ordering and magnetotransport transitions, for, 150, 213 Entropy of mixing **153,** 140 alkali halide solid solution, 153, 118 $TlCo_{2-x}Cu_{x}Se_{2}$ (x ~ 1) system, **151**, 260 YB₆₆: effects of transition metal doping, 154, 54 $Ba_4Er_2Cu_7O_{15-\delta}$, structural effects of Au and Al incorporation, 150, 228 Electron dispersive spectroscopy Bi₂O₃-MoO₃ system: compounds with structure based on [Bi₁₂O₁₄]₀₀ CaErPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic columns, 149, 276 measurements, 150, 112 $\operatorname{Er}_5 M_2 X$ (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bond-

Electronic energies

boron compounds, quasi-classical determination, 154, 148

Electronic properties

BaIr_{1-x}Co_xO_{3- δ} perovskites (x = 0.5,0.7,0.8), **152**, 361

 $R_5B_2C_5$ (R = Y,Ce-Tm), **154**, 286

Ce atoms in CeO₂ nanoncrystals, X-ray absorption spectroscopic study, **149.** 408

icosahedral boron-rich solids, correlation with structural defects, 154,

 A_2T_2 Sn (A = Ce,U; T = Ni,Pd), local spin density functional calculations, 149, 449

Ethylenediamine (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal struc-

 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neu-

(Hg,M)Sr₂(Er,Ce)₂Cu₂O₂ 1222-type superconductors, synthesis, X-ray

diffraction, and magnetic susceptibility, 154, 488

ing, **152,** 478

tron diffraction studies, 150, 188

ture, and spectroscopic properties, 154, 460

[C₂N₂H₁₀]₂Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, 154, 507

role in solvothermal synthesis of chalcogenides ${\rm Ag_8Sn}E_6$ (E = S,Se), 149, 338

Ethylene glycol

preparation of metallic powders and alloys in, thermodynamic approach, **154**, 405

Europium

Ba₂Eu(CO₃)₂F₃, optical behavior, comparison with Eu₃(BO₃)₂F₃, **153**, 270

Eu²⁺, luminescence in doped crystalline SrAl₂B₂O₇, 150, 404

 EuB_6 , interband transitions, IR-active phonons, and plasma vibrations, 154, 87

Eu₁₆Bi₁₁, synthesis, structure, and properties, **155**, 168

Eu₃(BO₃)₂F₃, anionic disorder in, evidence from Eu³⁺ luminescence: comparison with Ba₂Eu(CO₃)₂F₃, **153**, 270

EuP₅O₁₄, crystal structure and magnetic properties, **150**, 377

Eu₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, **152**, 441

Eu₁₆Sb₁₁, synthesis, structure, and properties, 155, 168

EuSn₃Sb₄ and related metallic Zintl phases, synthesis, structure, and resistivity, **150**, 371

(Hg,M)Sr₂(Eu,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

 $\text{La}_{1-x}\text{Eu}_x\text{NiO}_3$ (0 \leq x \leq 1), metal-insulator transition and magnetic properties, **151**, 1

Tl(Eu₂Sr₂)Ni₂O₉, synthesis and structure, 150, 1

Exchange inversion

 $Sm_{(1-x)}Gd_xTiO_3$, **154**, 619

Excimer

formation, effect on photoluminescence and electroluminescence of conjugated molecule doped in polymer, **153**, 192

Extended solids

frameworks for, geometrical design principles, 152, 3

Extended X-ray absorption fine structure

CeO₂ nanocrystals, 149, 408

NiCo₂O₄, 153, 74

F

Far-infrared spectroscopy

Cs₂CuP₃S₉, chiral compound with chiral screw helices, **151**, 326 Ferroelastic phases

Pb₅Al_{2.96}Cr_{0.04}F₁₉, crystal structure at 300 K, **155**, 427

Ferromagnetism

 $Ln_{0.4}Ca_{0.6}MnO_3$ rich in Mn(IV), induction by Ru doping, 151, 330 Figure of merit

boron and boron phosphide films, 154, 26

 β -rhombohedral boron doped with metal, **154**, 13

YB₄₁Si_{1.2}, **154**, 229

Floating zone growth

rare-earth hexaboride crystals, 154, 238

Fluorapatite

calcium fluorapatite, conversion into calcium hydroxyapatite under alkaline hydrothermal conditions, **151**, 65

Fluorescence spectroscopy

one-dimensional uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, **154**, 635

Fluorine

Ag(TCNQF₄) crystalline polymer, structure and magnetic properties, 152, 159

 $BaMBO_3F_2$ (M = Ga,Al), crystal structure, 155, 354

Ba₂Eu(CO₃)₂F₃, optical behavior, comparison with Eu₃(BO₃)₂F₃, **153**, 270 BaLiF₃ doped with Ce³⁺, optical spectroscopy properties and charge compensation, **150**, 178

 $Ca_6Sm_2Na_2(PO_4)_6F_2$, crystal structure and polarized Raman spectra, 149, 308

 $[C_2N_2H_{10}]_2$ Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507

Cs₂KMnF₆, phase transition

crystal structures of low- and high-temperature modifications, 150, 399

at high pressure, 153, 248

Eu₃(BO₃)₂F₃, anionic disorder in, evidence from Eu³⁺ luminescence: comparison with Ba₂Eu(CO₃)₂F₃, **153**, 270

FeOF, rutile-type, oxygen/fluorine ordering in, electron diffraction and crystal chemical studies, 155, 359

graphite monofluoride, structure and properties, analysis with 3D cyclic cluster approach, **150**, 286

KCuF₃ and K₂CuF₄, extended magnetic solids, spin exchange interactions in, 151, 96

K₂MnF₅·H₂O, neutron diffraction study, **150**, 104

KNiF₃ and K₂NiF₄, extended magnetic solids, spin exchange interactions in, 151, 96

 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, synthesis and crystal structure, 149, 189

1D uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, hydrothermal syntheses, structures, and fluorescence spectroscopy, **154**, 635

 $Pb_5Al_{2.96}Cr_{0.04}F_{19}$, ferroelastic phase, crystal structure at 300 K, 155, 427

Pb₇F₁₂Cl₂, disordered modification of, synthesis and structure, **149**, 56 PF₆ counterion, role in anomalous spin crossover of mechanically strained Fe(II)–1,10-phenanthroline complexes, **153**, 82

TIF, crystal structures, 150, 266

ZrPOF-*n* family with 2D and 3D structure types, synthesis and crystal structures, **149**, 21

Fluorite

(1 - x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 phases, electron diffraction and XRD studies, **149**, 218

intermediate cubic phase crystallized from Synroc alkoxide precursor at 800 °C, **150**, 209

 $Mo_{0.16}Bi_{0.84}O_{1.74}$, high-temperature cubic phase with 3D incommensurate modulation, synthesis and structure, **152**, 573

related oxides containing Ce, Pr, and/or Tb, lattice oxygen transfer in, 155, 129

Flux additions

in BaTiO₃, overview and prospects, 155, 86

Flux growth

Sm-doped SrSO₄ crystals, 154, 535

Sr₂NiN₂, **154**, 542

Flux synthesis

 $\text{Li}_{0.5}\text{Pb}_{1.75}\text{GeS}_4$, $\text{Na}_{1.5}\text{Pb}_{0.75}\text{PSe}_4$, and $\text{Na}_{0.5}\text{Pb}_{1.75}\text{GeS}_4$ with cubic structures, **153**, 158

Formate

CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent Raman study, **154**, 338

Fractional site occupancy

in M_5 Ge₄ compounds in Ge-Ta-Zr system, 150, 347

Framework topologies

for extended solids, geometrical design principles, 152, 3

Franckeite

misfit compound [(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370

Free energy of mixing

alkali halide solid solution, 153, 118

Fulborenes

 $B_{12}N_{12},\,B_{24}N_{24},\,\text{and}\,\,B_{60}N_{60},\,\text{semiempirical}$ and molecular dynamics studies, 154, 214

Fulborenites

prediction, lattice parameters, and densities, 154, 214

Functional crystals

search criteria and design principles, 152, 191

G

Gadolinium

Ba₄Gd₂Cd₃S₁₀, synthesis and structure, **149**, 384

Cu₂Gd_{2/3}S₂, crystal structure: interlayer short-range order of Gd vacancies, 152, 332

 Gd_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bonding, **152**, 478

GdB₆, magnetic entropy, 154, 275

GdCo₄B, magnetic properties, 154, 242

 $GdCuAs_2$, symmetry-breaking transitions through $GdCuAs_{1.15}P_{0.85}$ to $GdCuP_{2.20}$, 155, 259

GdCu₃Ti₃FeO₁₂, dielectric constant, 151, 323

 $GdNi_3X_2$ (X = Al,Ga,Sn), structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, **150**, 62

Gd₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, **154**, 246

Gd₂O₃-B₂O₃, thermal behavior and structural analysis, **154**, 204

GdPdGe, order of Pd and Ge atoms in, 154, 329

GdP₅O₁₄, crystal structure and magnetic properties, **150**, 377

Gd₇VO₄Se₈, synthesis and characterization, 154, 564

(Hg,M)Sr₂(Gd,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

RbGd₂CuSe₄, synthesis and structures, **151**, 317

Rb_{1.5}Gd₂Cu_{2.5}Se₅, synthesis and structure, **151**, 317

 $Sm_{(1-x)}Gd_xTiO_3$, magnetism, **154**, 619

Tl(Gd₂Sr₂)Ni₂O₉, synthesis and structure, **150**, 1

(Y,Gd)Al₃(BO₃)₄ solid solutions, crystal growth and characterization, 154, 317

Gallium

BaGaBO₃F₂, crystal structure, 155, 354

 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with *p*-type thermoelectric cage structure, synthesis and characterization, **151**, 61

BaGa₂O₄, stuffed framework structure, **154**, 612

 $MGa_2B_2O_7$ (M = Sr,Ba), crystal structures, 154, 598

Ga₂O₃-In₂O₃-SnO₂ system, tunneled intergrowth structures, **150**, 294 GaPO₄, structural phase transformations, **149**, 180

Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS glasses, magnetic susceptibility and local structure, 152, 388

 $GdNi_3Ga_2$, structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, **150**, 62

intercalation compounds of anionic oxalato complexes with layered double hydroxides, **153**, 301

 $KGaQ_2$ (Q = Se, Te) chalcogenides with stacking faults, synthesis and structure, **149**, 242

LaBaCuGaO₅, phase transition induced by high pressure, 155, 372

 Mn_3Ga_5 pseudo-decagonal approximant, preparation and crystal structure, 153, 398

Na₂Ga₂(BO₃)₂O, crystal structure, comparison with other layered oxyborates and SiP₂O₇, **154**, 344

[NH₃(CH₂)₃NH₃]_{0.5}[Ga(OH)AsO₄], synthesis and characterization, **155**, 37

β-SrGa₂O₄ and ABW-type γ-SrGa₂O₄, framework structures, **153**, 294 ZnGa₂O₄ self-activated phosphors, luminescent properties, systematic tuning by Cd²⁺ substitution, **150**, 204

Gamma radiation

induction of solid-state polymerization of sodium propynoate, **152**, 99 Geometric frustration

La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈, **155**, 189

Germanium

 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with *p*-type thermoelectric cage structure, synthesis and characterization, **151**, 61

Ba₆Ge_{25-x} structure and thermoelectric properties, **153**, 321

Ba₂₄Ge₁₀₀, preparation and structure, **151**, 117

Ba₆Ge₂₂In₃, structure and thermoelectric properties, **153**, 321

Ba₆Ge₂₃Sn₂, structure and thermoelectric properties, **153**, 321

Cs₈Na₁₆Ge₁₃₆ clathrate, synthesis and characterization, 153, 92

 $Ga_2S_3(As_2S_3,PbS)$ – GeS_2 –MnS glasses, magnetic susceptibility and local structure, **152**, 388

 M_5 Ge₄ compounds in Ge-Ta-Zr system, structure-composition relations and fractional site occupancy, **150**, 347

GeSe₂ three-dimensional crystals, structural transformations at high pressures and temperatures, **150**, 121

Li_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Na_{0.5}Pb_{1.75}GeS₄, **153**, 158

mesostructured 3D materials based on [Ge₄S₁₀]⁴⁻ and [Ge₄Se₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

 $Na_{0.5}Pb_{1.75}GeS_4$ with cubic structure, flux synthesis and isostructural relationship to $Na_{1.5}Pb_{0.75}PSe_4$ and $Li_{0.5}Pb_{1.75}GeS_4$, 153, 158

LnPdGe (Ln = La-Nd,Sm,Gd,Tb), order of Pd and Ge atoms in, 154, 329

 $Rb_8Na_{16}Ge_{136}$ clathrate, synthesis and characterization, 153, 92

 SnO_2 homogeneous substituted with, sol-gel synthesis and characterization, 154, 579

Yb₃Pd₄Ge₄, order of Pd and Ge atoms in, 154, 329

Gibbs energy of formation

Ca-Rh-O system, measurement, solid state cells with buffer electrodes for, **150**, 213

metallic powder and alloy preparation in polyol media, **154**, 405

Glass
Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS, magnetic susceptibility and local struc-

ture, **152**, 388

 $Na_2O-B_2O_3$ system, phase separation in, NMR study, 149, 459 Gold

Cs₇Au₅O₂, synthesis, structure, and properties, **155**, 29

incorporation into Ba₄Er₂Cu₇O_{15-δ}, structural effects, **150**, 228

 $Rb_5Au_3O_2$ and $Rb_7Au_5O_2,$ syntheses, structures, and properties, 155, 29 Graphite

intercalated with TaCl₆ and TaOCl₃, structural analysis with molecular simulations, **149**, 68

oxidation protection by BN coatings, 154, 162

Graphite monofluoride

structure and properties, analysis with 3D cyclic cluster approach, 150, 286

Grüneisen parameter

B₁₂P₂ wafers, **154**, 33

Guest-host interactions

effects on properties of anion-exchanged Mg-Al hydrotalcites, 155, 332

Н

Hafnium

 $BaHf_{1-x}Zr_x(PO_4)_2$, UV-emitting X-ray phosphor, **155**, 229

Hf-B-C system, phase equilibria, calculation by thermodynamic modeling, 154, 257

Halides

low-temperature reaction with Aurivillius phases, **150**, 416 Hall coefficient

YB₄₁Si_{1.2}, **154**, 229

Hardness

Al₃BC₃ at high pressure, **154**, 254

 $(Cr_{1-x}TM_x)_3B_4(TM = Ti,V,Nb,Ta,Mo,W)$ large crystal microhardness, 154, 45

rare-earth hexaboride crystals at high temperature, 154, 238

Heat capacity

B₁₂P₂ wafers, **154**, 33

Nd_{1-x}TiO₃ perovskites, **155**, 177

 $Sm_{1-x}TiO_3$ perovskites, **155**, 177

Heterobimetallic cyanide frameworks

zeolite-like, synthesis, quaternary ions R_4N^+ (R=nPr,nBu,nPen), as structure directors for, 152, 286

Heterocyclic amines

intercalation into α-titanium hydrogenphosphate, structural and calorimetric study, **154**, 557

Hexacyanoferrate(III)

Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332

Hexamethylenetetramine

Ag(I) complexes, polymeric, structure and topological diversity, **152**, 211 High-resolution electron microscopy

A-site cation vacancy ordering in $Sr_{1-3x/2}La_xTiO_3$, 149, 360

BaBi₃O_{5.5}: crystal growth and structure, 152, 435

Ba₈Co₇O₂₁, **151**, 77

 Bi_2O_3 -MoO₃ system: compounds with structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, 149, 276

1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi–Sr ordering, **151**, 210

 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), **150**, 188

LaBaCuGaO₅: phase transition induced by high pressure, **155**, 372 order–disorder phenomena in $SrMn_{1-y}(B,C)_yO_{3-\delta}$ perovskite-related oxyborocarbonates, **149**, 226

Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru: correlation of micronanostructure with magnetic transitions, **155**, 15

 RE_xWO_3 (RE = La,Nd) synthesized under high pressure, **154**, 466 YBa₂Cu₄O₈ superconductor: surface profile imaging, **149**, 327

Hole conductivity

Fe-doped boron, 154, 188

Holmium

(Hg,M)Sr₂(Ho,Ce)₂Cu₂O₂ 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

 $\text{Ho}_5 M_2 X (M = \text{Ni,Pd}; X = \text{Sb,Bi})$ pnictides, crystal structure and bonding, **152**, 478

HoB₆, magnetic entropy, 154, 275

 $\text{Ho}_2\text{Cu}_{6-x}\text{P}_{5-y}$, crystal structure and $(RE_{m+n})(\text{Cu}_2\text{P}_3)_m(\text{Cu}_4\text{P}_2)_n$ relationship to other rhombohedral rare earth copper phosphides, **151**, 150

 ${
m Ho_2NiB_{10}},$ synthesis, crystal structure, and magnetic and electrical properties, 154, 246

SrO-Ho₂O₃-CuO_x system, phase relations, **149**, 333

(Y,Ho)Al₃(BO₃)₄ solid solutions, crystal growth and characterization, 154, 317

Hopping conduction

 β -rhombohedral boron doped with metal, 154, 13

Host-guest chemistry

cavity-containing materials based upon resorcin[4]arenes, **152**, 199 quaternary ions R_4N^+ (R = nPr, nBu, nPen) as structure directors for synthesis of zeolite-like heterobimetallic cyanide frameworks, **152**, 286

Hume-Rothery phases

FeZn₁₀ and Fe₁₃Zn₃₉, synthesis, crystal structure, and electronic and bonding analysis. **151**, 85

Hydrogen, see also Deuterium

Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure of molecular and extended complexes, **152**, 247

Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, structures and magnetic properties, 152, 159

alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271

N-benzyl piperidinium dihydrogenmonophosphate, crystal structure and phase transitions, **155**, 298

CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent Raman study, **154**, 338

C(CH₃)₄, system with CCl₄, thermodynamics, **154**, 390

 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236

CH₄, mixture with H₂, temperature-programmed reaction with, in synthesis of tungsten carbides, **154**, 412

(R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180

(CH₃NH₃)₃Bi₂Cl₉, low-temperature phase transition and structural relationships, **155**, 286

 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, hydrothermal synthesis and crystal structure, **155**, 409

 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514

(C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460

 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, hydrothermal synthesis and characterization, **154**, 514

 $[C_2N_2H_{10}]_2$ Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507

 $[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}$, isolation and transformation to $[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}$, **150**, 417

[Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280

coordination polymers with 4,4'-dipyridyldisulfide, synthesis and structure, **152**, 113

 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174

[Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141

1,2-dihydro-*N*-aryl-4,6-dimethylpyrimidin-2-ones, C–H···O and C–H···N networks in, **152**, 221

Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, 152, 229

H₂, mixture with CH₄, temperature-programmed reaction with, in synthesis of tungsten carbides, 154, 412

hexagonal frameworks based on 1,3,5-benzenetricarboxylate and directed by hydrogen bonds, 152, 261

H_xMoO₃ bronzes, CDW superstructures, 149, 75

(H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, **152**, 229 LiH₅TeO₆, preparation, crystal structure, vibrational spectra, and thermal behavior, **150**, 410

metal carboxylates, microporous materials, synthesis and gas occlusion properties, **152**, 120

methylamines, intercalation into TiS₂, 155, 326

Na₄Co₃H₂(PO₄)₄·8H₂O, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292

Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122

Na(O₂CC \equiv CH), structure and γ -ray-induced solid-state polymerization: effect of bilayer formation on solid-state reactivity, **152**, 99

[N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324

[NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, **151**, 145

 $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(PO_4)_2]$ and $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(HPO_4)_3]$, synthesis and crystal structure, **155**, 62

 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, **155**, 37

NH₂(CH₂)₄NH₂V₄O₉, spin exchange interactions of, spin dimer analysis, **153**, 263

 $Ni(NH_3)_2X_2$ (X = Cl,Br,I), preparation and crystal structures, 152,

polymeric Ag(I)-hexamethylenetetramine complexes, structure and topological diversity, 152, 211

polymorphous one-dimensional tetrapyridylporphyrin coordination polymers structurally mimicking aryl stacking interactions, 152, 253

Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), synthesis and structure, X-ray single crystal and neutron powder diffraction studies, 149, 9

γ-SrHPO₄, synthesis and crystal structure, 152, 428

Ti(IV)-aryloxide network materials with 4.4'-biphenoxide and polyphenolic 2D motifs, synthesis and characterization, 152, 130

α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, 154, 557

 $(V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\}\cdot 2H_2O$, hydrothermal structure, and magnetic behavior, 155, 238

zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen), as structure directors for, 152, 286

 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, 149, 107

 $Zn_4(PO_4)_2(HPO_4)_2 \cdot 0.5(C_{10}H_{28}N_4) \cdot 2H_2O$, hydrothermal synthesis and crystal structure, 154, 368

ZrPOF-n family with 2D and 3D structure types, synthesis and crystal structures, 149, 21

Hydrogenation

 $GdNi_3X_2$ (X = Al,Ga,Sn), effect of synthesis conditions, 150, 62

YMn₂, followed by thermal treatment, single-phase YMn₂D₂ synthesis by, in situ neutron diffraction study, 150, 183

Hydrogen bonds

cavity-containing materials based upon resorcin[4] arenes, 152, 199

1,2-dihydro-*N*-aryl-4,6-dimethylpyrimidin-2-ones: C-H···O and C-H···N networks, 152, 221

hexagonal frameworks directed by, based on coordinated 1,3,5-benzenetricarboxylate, 152, 261

in inorganic-organic coordination polymers generated from rigid or flexible bidentate ligands and Co(NCS)₂ · xH₂O, 155, 143

ladder-like Cu(II) coordination polymers, 152, 183

porphyrin-based microporous materials with, construction, 152, 87 γ-SrHPO₄, 152, 428

Hydronium

 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, 154, 514

Hydrotalcite

anion-exchanged Mg-Al hydrotalcites, properties of, effects of guesthost interactions, 155, 332

borate/nitrate or silicate/nitrate exchange in, effect of Mg:Al ratio, 151, 272

Hydrothermal synthesis

aluminum phosphate oxalate hybrid open framework with large circular 12-membered channels, 150, 324

 $BaMBO_3F_2$ (M = Ga,Al), 155, 354

 $Ba_{1+x}V_8O_{21}$ bronze with tunnel structure, 150, 330

 $Ba_6[V_{10}O_{30}(H_2O)] \cdot 2.5H_2O$ with unusual arrangement of V^{IV} -O polyhedra, 151, 130

Bi₂Pb₂O₇ with pyrochlore structure, **149**, 314

calcium hydroxyapatite from calcium fluorapatite under alkaline conditions. 151, 65

 ${}_{\infty}^{3}$ [Cd(pdc)(H₂O)] and ${}_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], **152**, 236

 $[(CH_3NH_3)_0, (NH_4)_1,]Sb_8S_{13} \cdot 2.8H_2O, 155, 409$

 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, 154, 514

 $(C_2H_{10}N_2)[Ni(H_2O)_6](HPO_4)_2$, 154, 460

 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2], 154, 514$

 $[C_2N_2H_{10}]_2Fe_5F_4(PO_4)(HPO_4)_6$, 154, 507

[Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, 152, 141

Fe(H₂NCH₂CH₂NH₂)MoO₄, **152**, 229

 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157

 $(H_3NCH_2CH_2NH_3)[Fe(C_2O_4)MoO_4], 152, 229$

LaVO₄, 152, 486

LaV₃O₉, 152, 486

Na₄Co₃H₂(PO₄)₄ · 8H₂O, **149**, 292

[NH₃CH₂CH(OH)CH₂NH₃][Co₂(PO₄)₂] and [NH₃CH₂CH(OH) CH_2NH_3 [$Co_2(HPO_4)_3$], 155, 62

 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), 155, 37

one-dimensional uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, **154**, 635

open-framework metal phosphates from amine phosphates and monomeric four-membered ring phosphate, 152, 302

PbVO₂PO₄ with α -layered and β -tunnel structures, **149**, 149

pillared 3D Mn(II) coordination network with rectangular channels, **152,** 152

Rb₂Sb₈S₁₃·3.3H₂O, **155**, 409

solid solution series between β -Fe₂(PO₄)O and Fe₄(PO₄)₃(OH)₃, 153,

γ-SrHPO₄, **152**, 428

 $Sr_2Sn(OH)_8$, **151**, 56

SrV₄O₉ in metastable state, 149, 414

 $(V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\}\cdot 2H_2O, 155, 238$

 $Zn_4(PO_4)_2(HPO_4)_2 \cdot 0.5(C_{10}H_{28}N_4) \cdot 2H_2O$, **154**, 368

ZrPOF-n family zirconium phosphate fluorides with 2D and 3D structure types, **149**, 21

Hydroxide

calcium hydroxyapatite, formation from calcium fluorapatite under alkaline hydrothermal conditions, 151, 65

[Ca₁₀(PO₄)₆(OH)₂] hydroxyapatite, site preference of rare earth elements in, 149, 391

Cd(OH)Cl, synthesis, crystal structure, and relationship to brucite type, **151,** 308

Cu(OH)Cl, synthesis and crystal structure, relationship to brucite type, 151, 308

 $Fe_4(PO_4)_3(OH)_3$, and β - $Fe_2(PO_4)O$, solid solution series between, synthesis and phase characterization, 153, 237

layered double hydroxides, anionic intercalation of oxalato complexes into, 153, 301

 $[NH_3CH_2CH(OH)CH_3]_3 \cdot Al_3P_4O_{16},$ synthesis, racemic ropanolamine as solvent and template for, 151, 145

[NH₃CH₂CH(OH)CH₂NH₃][Co₂(PO₄)₂] and [NH₃CH₂CH(OH)CH₂ NH₃][Co₂(HPO₄)₃], synthesis and crystal structure, 155, 62

 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, 155, 37

[Pb₆O₄](OH)(NO₃)(CO₃), crystal structure, 153, 365

Rb₂[B₄O₅(OH)₄] · 3.6H₂O, crystal structure and thermal behavior, 149,

Sr(OH)Br, hydroxide ion disorder in, 151, 267

Sr₂Sn(OH)₈, hydrothermal synthesis and structure, 151, 56

[Zn-Al-Cl] layered double hydroxide, thermally treated, X-ray diffraction pattern simulation, 152, 568

 $ZrM(OH)_2(NO_3)_3$ (M = K,Rb), ab initio structure determination from X-ray powder diffraction, 149, 167

Hydroxyapatite

calcium hydroxyapatite, formation from calcium fluorapatite under alkaline hydrothermal conditions, 151, 65

[Ca₁₀(PO₄)₆(OH)₂], site preference of rare earth elements in, 149,

topotaxial replacement of chlorapatite under hydrothermal conditions, effect of metal ions, 154, 569

Hyperfine characterization

pure and doped zircons, 150, 14

Hyperfine interactions

¹¹⁹Sn dopant atoms in Ca₂Fe₂O₅, **151**, 313

Impedance spectroscopy

Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545} ceramics: particle sized effects on sintering and conductivity, **155**, 273

I

Incommensurate modulation

cadmium apatites, 150, 154

three-dimensional, $Mo_{0.16}Bi_{0.84}O_{1.74}$ high-temperature cubic fluorite-type phase, **152**, 573

Indium

Ba₆Ge₂₂In₃, structure and thermoelectric properties, 153, 321

CaIn₂O₄ phosphors activated by Pr, luminescence properties, 155, 441

CuInO₂ delafossite-type oxide, synthesis, 151, 16

Ga₂O₃-In₂O₃-SnO₂ system, tunneled intergrowth structures, 150, 794

 $(In_{0.5}\square_{0.5})[In_{1.5}Sn_{0.5}]S_4$, vacant thiospinel, reversible lithiation, pressure-sensitive modeling, **152**, 533

 $In_2O_3-M_2O_3$ (M=Y,Sc) solid solutions doped with Sn, electrical, optical, and structural properties, 153, 41

 In_2O_3 - TiO_2 -MgO system at 1100 and 1350°C, phase relations, **150**, 276

In₄Sn₃O₁₂ substituted with Y and Ti, structure and thermoelectric properties, 153, 349

InSn oxide powders, hydrothermally derived, sintering in air, **154**, 444 IrIn₂, structure, chemical bonding, and properties, **150**, 19

LiIn(MoO₄)₂, vibrational and X-ray studies, 154, 498

MgIn₂S₄ microcrystals on wide bandgap MgIn₂O₄, semiconductor sensitization by, **154**, 476

Na₃In(PO₄)₂, polymorphous modifications, structure, **149**, 99

LnNiIn₂ (Ln = Pr,Nd,Sm), synthesis and crystal structure, **152**, 560 PrRhIn, synthesis and properties, **152**, 560

Ti₃Rh₂In₃, structure, chemical bonding, and properties, **150**, 19

Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55

ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, structures and physical properties, **155**, 312

(ZnO)₅In₂O₃, isoelectronically substituted, structure and thermoelectric transport properties, 150, 221

ZrIn₂, structure, chemical bonding, and properties, **150**, 19 Inert pair effects

in lead and tin dihalides: crystal structure of SnBr₂, 149, 28 Infrared spectroscopy

apatite-related phosphates, 149, 133

 $B_{48}Al_3C_2$, phonon spectra and frequencies, 154, 75

N-benzyl piperidinium dihydrogenmonophosphate, 155, 298

Bi₂TeO₅, Bi₂Te₂O₇, and α- and β-Bi₂Te₄O₁₁, **152**, 392

boron carbide enriched in ¹⁰B, ¹¹B, and ¹³C isotopes, phonon spectra, **154**, 79

N,N'-dimethylpiperazinium(2+) selenate dihydrate, **150**, 305 intercalation compound of 1,10-phenanthroline with layered MnPS₃,

 $\rm K_{0.3}MoO_3$, electromodulated transmission spectrum, **155**, 105 $\rm LiH_5TeO_6$, **150**, 410

LiIn(MoO₄)₂, 154, 498

metal hexaborides, 154, 87

Na₃In(PO₄)₂ polymorphous modifications, **149**, 99

Ni effects on calcium phosphate formation, 151, 163

piperazinium(2+) selenate monohydrate, 150, 305

seven-coordinated diaquasuccinatocadmium(II) bidimensional polymer, 153, 1

vanadyl phosphate intercalated with acetone, 150, 356

Inorganic polymers with organic spacers

search criteria and design principles for functional crystals, 152, 191

Insulator-metal transition

Ln_{0.4}Ca_{0.6}MnO₃ rich in Mn(IV), induction by Ru doping, 151, 330

Interband transitions

B₄₈Al₃C₂, **154**, 75

metal hexaborides, 154, 87

Interdiffusion

paracrystal formation from $Ni_{1-x}O$ and CaO, 152, 421

Intergrowth phases

Cs₇Au₅O₂, 155, 29

Ga₂O₃-In₂O₃-SnO₂ system, tunneled structures, **150**, 294

 $Rb_5Au_3O_2$ and $Rb_7Au_5O_2$, **155**, 29

Interlayer charge transfer

in 2D misfit compounds, quantitation via bond valence calculation, 155, 1

Interlayer short-range order

Gd vacancies in Cu₂Gd_{2/3}S₂, 152, 332

Iodine

alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271

Ba₃SiI₂, synthesis, structure, and properties, **152**, 460

Cd₅(PO₄)₃I apatite, incommensurate modulation, **150**, 154

 $Hg_3Se_2I_2$ and $Hg_3S_2I_2$, synthesis and crystal structure, 151, 73

Ni(NH₃)₂I₂, preparation and crystal structures, **152**, 381

Ion exchange

hydroxide ions for fluoride ions in calcium fluorapatite, **151**, 65 topotaxial, hydroxyapatite for chlorapatite, effects of metal ions, **154**, 569

Ionic conductivity

AgTi₂(PS₄)₃, **153**, 55

Bi₂Pb₂O₇ with pyrochlore structure, **149**, 314

Li⁺ in β' - and β -LiZr₂(PO₄)₃, neutron diffraction study, 152,

Na₂SO₄-Al₂O₃ composite electrolytes, mechanism and role of preparatory parameters, **153**, 287

Iridium

 $BaIr_{1-x}Co_xO_{3-\delta}$ (x = 0.5, 0.7, 0.8) perovskites, structural chemistry and electronic properties, **152**, 361

IrIn₂, structure, chemical bonding, and properties, **150**, 19 Iron

boron doped with, physical-mechanical characteristics, 154, 188

Ca₂Fe₂O₅, ¹¹⁹Sn dopant atoms in, hyperfine interactions and dynamic characteristics, **151**, 313

CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483

 $[C_2N_2H_{10}]_2$ Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507

 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, synthesis and structure, **150**, 159

Cu₂FeSn₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363

Cu₂FeTi₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363

ACu₃Ti₃FeO₁₂, dielectric constants, **151**, 323

Dy₆FeTe₂, synthesis, structure, and bonding, **155**, 9

(Fe(CN)₆)³⁻, Mg–Al hydrotalcites exchanged with, properties, effects of guest–host interactions, **155**, 332

Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, **152**, 229

 A_2 FeNbO₆ (A = Sr,Ba) perovskites, magnetic susceptibility and Mössbauer spectroscopy, **154**, 591

α-Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, structural and magnetic properties, neutron diffraction and Mössbauer spectroscopic studies, 151, 157

FeOF, rutile-type, oxygen/fluorine ordering in, electron diffraction and crystal chemical studies, 155, 359

Fe(II)-1,10-phenanthroline complexes, anomalous spin crossover associated with mechanical strain, role of NCS⁻ and PF₆⁻ counterions. **153**, 82

β-Fe₂(PO₄)O and Fe₄(PO₄)₃(OH)₃, solid solution series between, synthesis and phase characterization, **153**, 237

FePS₃, layered compound, intercalation reaction with 1,10-phenanthroline, **150**, 258

FeZn₁₀ and Fe₁₃Zn₃₉, synthesis, crystal structure, and electronic and bonding analysis, **151**, 85

(H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, **152**,

LiFe_{1-x}Co_xO₂ ($0 \le x \le 1$), magnetic properties, effect of Co, **154**, 451 Li-Mn-Fe-O spinels, Li ion distribution in, computer modeling, **153**, 310 LuFeO₃(ZnO)_m, charge distribution analysis: effect of coordination polyhedra shape on cation distribution, **150**, 96

magnetic iron oxide/mullite nanocomposite with stability up to $1400~^{\circ}\text{C}$, 155, 458

Mg-Fe-O system, phase stability, 149, 33

[NH₃(CH₂)₃NH₃]_{0.5}[Fe(OH)AsO₄], synthesis and characterization, **155**, 37

Ni_{1-x}Cu_xFeAlO₄, Mössbauer effect study, **149**, 434

 $Pr_{1-x}Sr_xFeO_{3-\delta}$, structure and magnetism, **150**, 233

 β -rhombohedral boron doped with, thermoelectric properties, **154**, 13 Sm_{1/3}Sr_{2/3}FeO_{3- δ}, charge ordering and magnetotransport transitions, **153**, 140

 $Sr_2Fe_2O_5$, structural phase transition under high pressure, 155, 381 $Sr_nFe_nO_{3n-1}$ ($n=2,4,8,\infty$) perovskites, oxygen-vacancy-ordered crystal structure, evolution and relationship to electronic and magnetic properties, 151, 190

Sr₄Fe₂O₆CO₃, synthesis, crystal structure, and magnetic order, **152**, 374

 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x=1,1.5,2), Ruddlesden-Popper phases, properties, **155**, 96

UFe₅Sn, synthesis, crystal structure, and magnetic properties, **154**, 551 zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen) as structure directors for, **152**, 286

(ZrO₂)_{0.8}-(α-Fe₂O₃)_{0.2} powder for gas sensing applications, mechanical alloying and thermal decomposition, **155**, 320

4-Isocyano-3,5-diisopropylbenzonitrile

molecular and extended Ag(I) complexes, synthesis and structures, 152, 247

Isopropanolamine

racemic, as solvent and template for synthesis of $[NH_3CH_2CH(OH)CH_3]_3 \cdot Al_3P_4O_{16}$, 151, 145

Itinerant-electron magnetism

 $Sm_{(1-x)}Gd_xTiO_3$, 154, 619

J

Jahn-Teller distortion

 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}Q_2$ (Q = S,Se), 153, 26

Κ

Kinetics

phase transformations induced by ball-milling in anatase TiO_2 , 149, 41

L

Ladder-like coordination polymers

Cu(II)-containing, self-assembly, structures, and magnetic properties, 152, 183 Landau theory

symmetry-breaking transitions from GdCuAs₂ through GdCuAs_{1.15}P_{0.85} to GdCuP_{2.20}, **155**, 259

Lanthanum

 $BaLa_2MnS_5$, crystal structure and magnetic properties, 153, 330 $BaLaMRuO_6$ (M=Mg,Zn), atomic and magnetic long-range ordering in, 150, 383

 ${\rm Bi_{0.775}La_{0.225}O_{1.5}}$ of rhombohedral Bi–Sr–O type, structure and conductivity optimization by polycationic substitutions for La, **149**, 341

Bi_{1-y}La_yO_{1.5} monoclinic solid solution, identification and structural relationship to rhombohedral Bi-Sr-O type, **151**, 281

 $Bi_{4-x}La_xTi_3O_{12}$ (x = 1,2), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

K₂SrLaTi₂TaO₁₀ · 2H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46

 $La_3Al_{0.44}Si_{0.93}S_7$, crystal structure, **155**, 433 LaB_6

chemical vapor deposition, thermodynamic estimation, **154**, 157 floating zone growth and high-temperature hardness, **154**, 238 interband transitions, IR-active phonons, and plasma vibrations, **154**, 87

LaBaCuGaO₅, phase transition induced by high pressure, **155**, 372 La₃BSi₂O₁₀, crystallization and structural characteristics, **154**, 312

 LaB_6 –(Ti,Zr) B_2 alloys, eutectic crystallization, **154**, 165 ($La_{1-x}Ca_x$)CrO₃, chemical and thermal expansion, **149**, 320

La_{0.4}Ca_{0.6}MnO₃, Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, **151**, 330

La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, structure and magnetic properties, 152, 503

LaCoO₃-LaMnO₃-BaCoO_z-BaMnO₃ system, phase equilibria, **153**, 205

LaCrO₃, structural phase transition, neutron powder diffraction study, 154, 524

La_{1.85}^{3,8}M_{0.15}²CuO₄ superconductors, true tolerance factor effects in, 155, 138

La₂CuO₄, extended magnetic solids, spin exchange interactions in, 151, 96

La₅Cu₆O₄S₇, synthesis, structure, electrical conductivity, and band structure, **155**, 366

LaCu₃Ti₃FeO₁₂, dielectric constant, **151**, 323

La_{2/3}Cu₃Ti₄O₁₂, dielectric constant, 151, 323

 $\text{La}_{1-x}\text{Eu}_x\text{NiO}_3$ (0 $\leq x \leq$ 1), metal-insulator transition and magnetic properties, 151, 1

 $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O$ ($M = K, NH_4$), crystal structure and thermal behavior, **150**, 81

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, **155**, 280

La-Mn-O at 1100°C, phase equilibria, 153, 336

La₅Mo₃₂O₅₄, with *trans*-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, synthesis, structure, and properties, **152**, 403

 $La_{\sim 10.8}Nb_5O_{20}S_{10}$, synthesis and structure, 152, 348

 $\text{La}_{2-x}\text{Nd}_x\text{CuO}_4$ (0.6 $\leq x \leq$ 2), pressure-induced phase transitions, **151.** 231

 $\text{La}_3\text{Ni}_2\text{O}_7$, neutron diffraction study: structural relationships among phases $\text{La}_{n+1}\text{Ni}_n\text{O}_{3n+1}$ (n=1,2,3), **152**, 517

LaPdGe, order of Pd and Ge atoms in, 154, 329

LaP₅O₁₄, crystal structure and magnetic properties, **150**, 377

 $LaM_4^{2+}(PO_4)_3O$ ($M^{2+}=Ca,Sr$), synthesis and characterization, **149**,

La_{0.5}Pr_{0.5}CrO₃, magnetization reversal, **155**, 447

 $La_5Re_3MnO_{16}$, synthesis, structure, and magnetic behavior, **151**, 31 $La_{4.87}Ru_2O_{12}$ and $La_7Ru_3O_{18}$, geometric frustation in, **155**, 189 $La_5Si_2BO_{13}$, synthesis and neutron diffraction study, **155**, 389

 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3~(0 \le x \le 1)$ solid solutions, magnetic properties, 153, 145

 $\text{La}_{1-x}\text{Sr}_x\text{Cr}_{1-x}\text{Ti}_x\text{O}_3$ perovskite series, structural characterization, 155, 455

 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, synthesis and crystal structure, 149, 189

La_{0.7}Sr_{0.3}MnO_{3- δ} \square_{δ} (0 \leq δ \leq 0.15), physical properties, effects of oxygen nonstoichiometry, **151**, 139

 $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, synthesis and characterization, 153, 34

LaTe₂, crystal and electronic band structure, 149, 155

LaVO₄, hydrothermal synthesis and crystal structure, 152, 486

LaV₃O₉, hydrothermal synthesis and crystal structure, **152**, 486

La_xWO₃ bronze synthesized under high pressure, X-ray diffraction and electron microscopy, **154**, 466

site preference in hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂], 149, 391

 $Sr_{1-3x/2}La_xTiO_3$, A-site cation-vacancy ordering in, HRTEM study, 149, 360

Tl(La₂Sr₂)Ni₂O₉, synthesis and structure, **150**, 1

Leaching

from $BaCa_{0.393}Nb_{0.606}O_{2.91}$ in aqueous media, resulting amorphization at room temperature, **149**, 262

Lead

Bi₂Pb₂O₇ with pyrochlore structure, hydrothermal synthesis and characterization, **149**, 314

 $Ca_{2-x}Mg_xPb$, structure, resistivity, and magnetic susceptibility, 152, 474

Ce_{1-x}PbVO_{4-0.5x} with zircon-type structure, preparation by solidstate reaction in air, **153**, 174

Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS glasses, magnetic susceptibility and local structure, **152**, 388

Li_{0.5}Pb_{1.75}GeS₄, Na_{0.5}Pb_{1.75}GeS₄, and Na_{1.5}Pb_{0.75}PSe₄ with cubic structure, flux synthesis and isostructural relationships, **153**, 158

Pb₅Al_{2.96}Cr_{0.04}F₁₉, ferroelastic phase, crystal structure at 300 K, **155**,

 $PbBi_6O_4(XO_4)_4$ (X = P,V,As), existence of, **154**, 435

Pb₅Bi₁₈P₄O₄₂, crystal structure, **151**, 181

PbBr₂ and PbCl₂, inert pair effects: crystal structure of SnBr₂, 149, 28

Pb₇F₁₂Cl₂, disordered modification of, synthesis and structure, **149**, 56

 $Pb(Mg_{1/3}Nb_{2/3})O_3$, formation via mechanically activated nucleation and growth, **154**, 321

 $0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O_3-0.6Pb(Zn_{1/3}Nb_{2/3})O_3]-0.1PbTiO_3,$ formation via mechanically activated nucleation and growth, **154**, 321

(Pb(Mn,Nb)_{0.5}S_{1.5})_{1.15} NbS₂, interlayer charge transfer quantitation via bond valence calculation, 155, 1

[Pb₆O₄](OH)(NO₃)(CO₃), crystal structure, **153**, 365

PbS nanoparticles, sonochemical synthesis, 153, 342

[(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370

PbVO₂PO₄, α -layered and β -tunnel structures, **149**, 149

Pb(Zr_{0.52}Ti_{0.48})O₃, formation via mechanically activated nucleation and growth, **154**, 321

Linearized muffintin orbital method

electronic band structure of CdCr₂Se₄ spinels, 155, 198

Lithiation

reversible, vacant thiospinel $(In_{0.5}\square_{0.5})[In_{1.5}Sn_{0.5}]S_4$, pressure-sensitive modeling, **152**, 533

Lithium

BaLiF₃ doped with Ce³⁺, optical spectroscopy properties and charge compensation, **150**, 178

BPO₄ doped with, ionic distribution in, NMR study, 153, 282

hydrated lithium vanadium bronze, synthesis, 149, 443

insertion into Mg₂Si, reaction mechanism, 153, 386

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, 155, 280

 $\text{LiFe}_{1-x}\text{Co}_x\text{O}_2$ (0 $\leq x \leq$ 1), magnetic properties, effect of Co, **154**, 451 LiH_5TeO_6 , preparation, crystal structure, vibrational spectra, and ther-

LiIn(MoO₄)₂, vibrational and X-ray studies, 154, 498

Li-Mn-Fe-O spinels, Li ion distribution in, computer modeling, 153, 310

LiMn₂O₄-based spinels

mal behavior, 150, 410

Ni-stabilized, electrochemical insertion properties of, effects of partial acid delithiation, **150**, 196

origin of 3.3 V and 4.5 V steps, TEM studies of, 155, 394

Li_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Na_{0.5}Pb_{1.75}GeS₄, **153**, 158

Li₂S, reversible antifluorite to anticotunnite phase transition at high pressures, **154**, 603

LiTi₂O₄ superconductor and related compounds, Li site occupancy in, NMR study, 152, 397

Li₂Ti₃O₇, H phase, engineered scavenger compound, structural characterization, 152, 546

Li_{2+x}Ti₃O₇, electrochemically obtained, structural study, **153**, 132

β-LiVOAsO₄, synthesis, structure, and physical studies, **150**, 250

 $LiZr_2(PO_4)_3$, β' and β phases, order-disorder and mobility of Li^+ in, neutron diffraction study, **152**, 340

Local spin density functional theory

 A_2T_2 Sn (A =Ce,U; T =Ni,Pd): band magnetism calculations, **149**, 449 Lone pair electrons

effect on TIF crystal structure, 150, 266

Pb₅Bi₁₈P₄O₄₂, location, **151**, 181

role in conductivity properties of Bi-La-based oxide conductors of rhombohedral Bi-Sr-O type with polycationic substitutions for La, 149, 341

Low-connectivity nets

three-dimensional, basic geometries, 152, 3

Luminescence

Ag(I) in $Na_{2-x}Ag_xZnP_2O_7$, **149**, 284

 $BaHf_{1-x}Zr_x(PO_4)_2$: UV emission under X-ray excitation, 155, 229

BaLiF₃ doped with Ce³⁺, 150, 178

CaIn₂O₄ phosphors activated by Pr, 155, 441

 $Cu_{0.5}^{I}Mn_{0.25}^{II}Zr_{2}(PO_{4})_{3}$ Nasicon-type phosphate, 152, 453

Eu²⁺ in doped crystalline SrAl₂B₂O₇, 150, 404

Eu³⁺ in Eu₃(BO₃)₂F₃ and Ba₂Eu(CO₃)₂F₃: evidence of anionic disorder in fluoride borate, **153**, 270

 β -rhombohedral boron of high purity, **154**, 68

TlZn(PO₃)₃, 154, 584

ZnGa₂O₄ self-activated phosphors, systematic tuning by Cd²⁺ substitution, **150**, 204

Lutetium

Ba₂LuTaO₆, Yb³⁺ doped in, EPR study, **150**, 31

CaLuPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, 150, 112

 Lu_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bonding, **152**, 478

LuFeO₃(ZnO)_m, charge distribution analysis: effect of coordination polyhedra shape on cation distribution, **150**, 96

Lu₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, 152, 441

(Y,Lu)Al₃(BO₃)₄ solid solutions, crystal growth and characterization, 154, 317

2,6-Lutidine

intercalation into α -titanium hydrogenphosphate, structural and calorimetric study, **154**, 557

Μ

```
Magnesium
```

BaLaMgRuO₆, atomic and magnetic long-range ordering in, **150**, 383 BiMg₂VO₆, variable-temperature X-ray diffraction study, **149**, 143

 $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), structure, resistivity, and magnetic susceptibility, **152**, 474

CaO-MgO solid solutions, mixing properties, semi-empirical and ab initio calculations, 153, 357

Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, 152, 526

Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, **153**, 185

 In_2O_3 – TiO_2 –MgO system at 1100 and 1350°C, phase relations, **150**, 276 Mg^{2+} , α - Fe_2O_3 substituted with, structural and magnetic properties,

neutron diffraction and Mössbauer spectroscopic studies, **151**, 157 Mg-Al hydrotalcites, anion-exchanged, properties of, effects of guest-host interactions, **155**, 332

Mg:Al ratio, effect on borate/nitrate or silicate/nitrate exchange in hydrotalcite, **151**, 272

Mg-Fe-O system, phase stability, 149, 33

MgIn₂S₄ microcrystals on wide bandgap MgIn₂O₄, semiconductor sensitization by, **154**, 476

MgO-MnO solid solutions, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357

MgOs₃B₄, channel structure, 154, 232

Mg₂Si, Li insertion into, reaction mechanism, 153, 386

 $Na_{3.64}Mg_{2.18}(P_2O_7)_2$, crystal structure, 152, 323

 $Pb(Mg_{1/3}Nb_{2/3})O_3$, formation via mechanically activated nucleation and growth, **154**, 321

 $0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O_3-0.6Pb(Zn_{1/3}Nb_{2/3})O_3]-0.1PbTiO_3$, formation via mechanically activated nucleation and growth, **154**, 321

Magnetic entropy

rare-earth hexaborides, 154, 275

Magnetic exchange

 $Sm_{(1-x)}Gd_xTiO_3$, **154**, 619

Magnetic nanocomposite

iron oxide/mullite with stability up to 1400 °C, 155, 458

Magnetic order

Pr_{1-x}Ba_xCoO₃ perovskite, magnetic circular dichroism spectroscopic study, **152**, 577

short-range ordering induced by isovalent substitution of Sr^{2+} for Ba^{2+} in $BaMnS_2$, 155, 305

 $Sm_{(1-x)}Gd_xTiO_3$, **154**, 619

Sr₄Fe₂O₆CO₃, 152, 374

Magnetic properties

Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, 152, 159

Ba₂CoNbO₆ perovskite, 151, 294

BaMnS₂, **155**, 305

 $BaLn_2MnS_5$ (*Ln* = La,Ce,Pr), **153**, 330

Ba₃SiI₂, **152**, 460

 $Ba_{0.93}Sr_{0.07}MnS_2$, 155, 305

 $R_5B_2C_5$ (R = Y,Ce-Tm), **154**, 286

borocarbides Ln-M-B-C (Ln = rare earths, Y; M = Ni,Pd), 154, 114

Ca_{3.1}Cu_{0.9}RuO₆, **153**, 254

 $Ce_{1-x}Nd_xTiO_3$, **153**, 145

 RCo_4B (R = Y,Pr,Nd,Sm,Gd,Tb), **154**, 242

 $(Cr_{1-x}Ni_x)_3Te_4$ with pseudo-NiAs-type structure, 154, 356

 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), **152**, 174

Cu(II) ladder-like coordination polymers, 152, 183

Eu₁₆Bi₁₁, **155,** 168

Eu₁₆Sb₁₁, **155**, 168

 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157

GdCuAs₂, GdCuAs_{1.15}P_{0.85}, and GdCuP_{2.20}, 155, 259

 $GdNi_3X_2$ (X = Al,Ga,Sn), relationship to synthesis conditions, 150, 62

intercalation compound of 1,10-phenanthroline with layered MnPS₃, 150, 281

IrIn₂, **150**, 19

iron oxide/mullite nanocomposite, 155, 458

La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, 152, 503

La₅Re₃MnO₁₆, **151**, 31

La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈, 155, 189

 $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_{3-\delta}\square_{\delta}$ (0 \leq δ \leq 0.15), effects of oxygen non-stoichiometry, **151**, 139

 $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, 153, 34

 $LiFe_{1-x}Co_xO_2$ (0 $\le x \le 1$), effect of Co, **154**, 451

 β -LiVOAsO₄, **150**, 250

RE₅Mo₃₂O₅₄ (RE = La,Ce,Pr,Nd) with trans-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, **152**, 403

Na₄Co₃H₂(PO₄)₄ · 8H₂O, 149, 292

 $Nd_4Co_3O_{10+\delta}$ and $Nd_4Ni_3O_{10-\delta}$, **151**, 46

 $R_2 \text{NiB}_{10}$ (R = Y,Ce-Nd,Sm,Gd-Ho), **154**, 246

pillared 3D Mn(II) coordination network with rectangular channels, 152, 152

Pr_{1-x}Ba_xCoO₃ perovskite, magnetic circular dichroism spectroscopic study, **152**, 577

PrRhIn, 152, 560

 $Pr_{1-x}Sr_xFeO_{3-\delta}$, **150**, 233

Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru, correlation with micronanostructures, **155.** 15

 $SmNi_{1-x}Co_xO_3$, relationship to structure, **150**, 145

 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, 153, 140

 A_2T_2 Sn (A = Ce,U; T = Ni,Pd), local spin density functional calculations, **149**, 449

Sr_{4.5}Cr_{2.5}O₉, **154**, 375

 $Sr_nFe_nO_{3n-1}$ ($n=2,4,8,\infty$), oxygen-vacancy-ordered perovskites, relationship to crystal structure, **151**, 190

Sr₂NiN₂, **154**, 542

 $Sr_{11}Re_4O_{24}$ double oxide, 149, 49

 $Ln_{1-x}Ln'_x \text{TiO}_3$ (Ln and $Ln' = \text{La-Sm}; 0 \le x \le 1$) solid solutions, 153, 145

 $Ln_{2/3}$ TiO₃ (Ln = Pr, Nd), **149**, 354

Ti₃Rh₂In₃, 150, 19

 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La, Pr, Nd, Sm, Eu, Gd), 150, 1

UFe₅Sn, 154, 551

 $(V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\}\cdot 2H_2O, 155, 238$

 $Ln_7VO_4Se_8$ (Ln = Nd,Sm,Gd), 154, 564

YMn₂D_{1.15}, **154**, 398

ZrIn₂, 150, 19

Magnetic solids

extended, spin exchange interactions in $KCuF_3$, K_2CuF_4 , $KNiF_3$, K_2NiF_4 , La_2CuO_4 , and Nd_2CuO_4 , 151, 96

Magnetic structure

Ca_{3.1}Cu_{0.9}RuO₆, **153**, 254

K₂MnF₅·H₂O, neutron diffraction study, **150**, 104

Sr₄Fe₂O₆CO₃, **152**, 374

Magnetic susceptibility

Ba₂YbTaO₆ with ordered perovskite structure, **150**, 31

 $CaErPt_3Sn_5 \ and \ CaLuPt_3Sn_5, with \ Yb_2Pt_3Sn_5 - type \ structure, \textbf{150,} \ 112$

 $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), **152**, 474

CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, **154**, 483

CaTmPt₃Sn₅ and CaYbPt₃Sn₅, with Yb₂Pt₃Sn₅-type structure, **150**, 112

Ce₂Ni₂Cd, **150**, 139

 A_2 FeNbO₆ (A = Sr,Ba) perovskites, **154**, 591

 $Ga_2S_3(As_2S_3,PbS)$ - GeS_2 -MnS glasses, 152, 388

 $(Hg,M)Sr_2(Ln,Ce)_2Cu_2O_2$ 1222-type superconductors, **154**, 488

 $La_{1-x}Eu_xNiO_3 \ (0 \le x \le 1), \ 151, \ 1$

 $La_{n+1}Ni_nO_{3n+1}$ (n = 2,3), **152**, 517

Na₂Ti₂Sb₂O, relationship to structure, powder neutron diffraction study, **153**, 275

 RP_5O_{14} (R = La, Nd, Sm, Eu, Gd), 150, 377

 R_2 Ru₂O₇ (R = rare earths) pyrochlores, ac susceptibility, **152**, 441 Sm_(1-x)Gd_xTiO₃, **154**, 619

 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x=1,1.5,2) Ruddlesden-Popper phases, **155**, 96 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x=0.87), **152**, 540

(VO)₂P₂O₇ phase grown at 3 GPa, 153, 124

Magnetization

La_{0.5}Pr_{0.5}CrO₃, reversal of, **155**, 447

Magnetoresistance

colossal, see Colossal magnetoresistance

Sr₂CrMoO₆ double perovskite, 155, 233

Magnetotransport transitions

 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, **153**, 140

Manganese

BaMnS₂, magnetic properties, 155, 305

BaLn₂MnS₅ (Ln = La,Ce,Pr), crystal structures and magnetic properties. 153, 330

Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, **155**, 305

1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi–Sr ordering, synthesis and characterization, **151**, 210

Ln_{0.4}Ca_{0.6}MnO₃ (Ln = La,Pr,Nd,Sm), Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330

CaMnO₃, Mn site-doped, colossal magnetoresistance, 149, 203

CaO-MnO solid solutions, mixing properties, semi-empirical and ab initio calculations, 153, 357

(Cd_{1-x}Mn_x)Mn₂O₄, synthesis, stoichiometry, and electrical transport properties, 153, 231

 $Cd_{1-\delta}Mn_2O_y$, crystal chemistry, Mn–K edge XAS study, **149**, 252 Cs_2KMnF_6 , phase transition

crystal structures of low- and high-temperature modifications, 150,

at high pressure, 153, 248

 $Cu_{0.5}^{I}Mn_{0.25}^{I}Zr_{2}(PO_{4})_{3}$ Nasicon-type phosphate, structure and luminescence, **152**, 453

Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS glasses, magnetic susceptibility and local structure, 152, 388

K₂MnF₅·H₂O, neutron diffraction study, **150**, 104

La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, structure and magnetic properties, **152**, 503

LaCoO₃-LaMnO₃-BaCoO₂-BaMnO₃ system, phase equilibria, **153**, 205

La-Mn-O at 1100°C, phase equilibria, 153, 3367

La₅Re₃MnO₁₆, synthesis, structure, and magnetic behavior, 151,

La_{0.7}Sr_{0.3}MnO_{3- δ} \Box_{δ} (0 $\leq \delta \leq$ 0.15), physical properties, effects of oxygen nonstoichiometry, **151**, 139

 $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, synthesis and characterization, **153**, 34

Li-Mn-Fe-O spinels, Li ion distribution in, computer modeling, 153, 310

LiMn₂O₄-based spinels

Ni-stabilized, electrochemical insertion properties of, effects of partial acid delithiation, **150**, 196

origin of 3.3 V and 4.5 V steps, TEM studies of, 155, 394

manganites, origin of bulk magnetoresistivity, 155, 116

MgO-MnO solid solutions, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357

MnCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113

 Mn_3Ga_5 pseudo-decagonal approximant, preparation and crystal structure, 153, 398

MnO-NiO solid solutions, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357

Mn-phenanthroline complexes, functionalized MCM-41 containing, synthesis and characterization, **152**, 447

MnPS₃, intercalation compound with 1,10-phenanthroline, synthesis, characterization, and magnetic properties, **150**, 281

(Pb(Mn,Nb)_{0.5}S_{1.5})_{1.15} NbS₂, interlayer charge transfer quantitation via bond valence calculation, **155**, 1

pillared 3D Mn(II) coordination network with rectangular channels, synthesis, X-ray structure, and magnetic properties, **152**, 152

 $(Pr_4N)_2Mn(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O (X = S,Se)$, synthesis and structure, **153**, 195

(Pr₄N)₂Mn(H₂O)₄[Re₆S₈(CN)₆], synthesis and structure, **153**, 195

Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru, micronanostructures, correlation with magnetic transitions, 155, 15

 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}Q_2$ (Q=S,Se), synthesis and structure, 153, 26

 $SrMn_{1-y}(B,C)_yO_{3-\delta}$, order-disorder phenomena, **149**, 226

 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x=1,1.5,2), Ruddlesden-Popper phases, properties, **155**, 96

YMn₂D_{1.15}, structural and magnetic properties, **154**, 398

YMn₂D₂ single phase, synthesis, study by *in situ* neutron diffraction, **150**, 183

Mass spectrometry

sputtered neutral, cation loss from BaCa_{0.393}Nb_{0.606}O_{2.91} in aqueous media leading to amorphization at room temperature, **149**, 262

ACM-41

functionalized, with Cu- and Mn-phenanthroline complexes, synthesis and characterization, **152**, 447

Mechanical activation

complex perovskite formation via nucleation and subsequent growth, **154,** 321

Mechanical alloying

La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by, structure and magnetic properties, 152, 503

 $(ZrO_2)_{0.8}$ - $(\alpha$ -Fe₂O₃)_{0.2} powder for gas sensing applications, **155**, 320 Mechanical properties

Fe-doped boron, **154**, 188

Mo₂NiB₂ boride base cements with Cr and V additions, effects of Mo/B atomic ratio, **154**, 263

strength and creep in α -AlB₁₂ and γ -AlB₁₂, **154**, 191

Mechanical strain

in Fe(II)-1,10-phenanthroline, associated anomalous spin crossover, role of NCS⁻ and PF₆⁻ counterions, **153**, 82

Mechanochemical reactions

polymeric oxovanadium(IV) complexes with Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines, 153, 9

in Sn-Zn-S system, 153, 371

Mercury

Cs₅Hg₁₉, synthesis and structure, 149, 419

 A_3 Hg₂₀ (A =Rb,Cs) and A_7 Hg₃₁ (A =K,Rb), synthesis and structure, **149**, 419

Hg₆As₄BiCl₇ built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, **154**, 350

HgCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113

HgS nanoparticles, sonochemical synthesis, 153, 342

Hg₆Sb₄BiBr₇ and Hg₆Sb₅Br₇, built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, 154, 350

Hg₃Se₂I₂ and Hg₃S₂I₂, synthesis and crystal structure, 151, 73

(Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z, 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

HgTe, preparation by microwave heating, 154, 530

K₃Hg₁₁, synthesis and structure, **149**, 419

mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, **153**, 106

Metal carboxylates

microporous materials, synthesis and gas occlusion properties, **152**, 120 Metal-insulator transition

 $La_{1-x}Eu_xNiO_3 \ (0 \le x \le 1), 151, 1$

LnNiO₃ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via different precursors, 151, 298

pure and V-doped β -rhombohedral boron, 154, 307

 $SmNi_{1-x}Co_xO_3$, **150**, 145

in strongly correlated oxides, 155, 177

Metallacrowns

in preparation of chiral solids, 152, 68

Metallic powders

preparation in polyol media, thermodynamic approach, **154**, 405

Metalloboranes

solid state structures, molecular models of, 154, 110

Metalloporphyrins

microporous materials, construction, 152, 87

Metal-nonmetal transition

in Ru pyrochlores, structural studies, 151, 25

Metamagnetism

LiFe_{1-x}Co_xO₂ ($0 \le x \le 1$), effect of Co, **154**, 451

Metastable phases

Bi₂Pb₂O₇ with pyrochlore structure, hydrothermal synthesis and characterization, **149**, 314

SrV₄O₉, synthesis and crystal structure, 149, 414

Methane

mixture with H₂, temperature-programmed reaction with, in synthesis of tungsten carbides, **154**, 412

Methylamines

intercalation into TiS2, 155, 326

Methylhydrazine

boron nitride film preparation by MOCVD with, 154, 101

Microhardness

 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, **154**, 45 Microwave heating

in preparation of Cu_{2-x} Te and HgTe, 154, 530

Misfit compounds

Franckeite-type [(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370

Mixing properties

MO-M'O solid solutions, semi-empirical and *ab initio* calculations, **153**, 357

Modulated photocurrent

pure and V-doped β -rhombohedral boron, measurements, **154**, 307 Molecular dynamics

BN nanotubes, 154, 214

evaluation of thermodynamic properties of nonideal solid solutions, **153**, 118

Molecular simulation

tantalum chloride-graphite intercalation compound structure, **149**, 68 vanadyl phosphate intercalated with acetone, **150**, 356

Molybdenum

Bi₂MoO₆ catalyst, high-temperature incommensurate-to-commensurate phase transition, **155**, 206

 Bi_2O_3 -MoO₃ system, EDS and TEM study: compounds with structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, **149**, 276

(Cr_{1-x}Mo_x)₃B₄ large crystals, synthesis and analysis, 154, 45

[Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141

discrete Mo oxide-based building blocks as synthons, in control of growth of solid-state materials, **152**, 57

Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, 152, 229

(Hg,Mo)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

H_xMoO₃ bronzes, CDW superstructures, 149, 75

(H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, **152**, 229 K_{0.3}MoO₃, interactions of sliding charge-density waves with phonons, **155**, 105

K_{1.8}Mo₉S₁₁, band structure, **155**, 124

LiIn(MoO₄)₂, vibrational and X-ray studies, 154, 498

Mo_{0.16}Bi_{0.84}O_{1.74}, high-temperature cubic fluorite-type phase with 3D incommensurate modulation, synthesis and structure, **152**, 573

Mo(II) dicarboxylates, microporous materials, synthesis and gas occlusion properties, 152, 120

Mo ions in rutile TiO₂, redox properties, XRD and EPR study, **152**, 412 Mo₂NiB₂ boride base cements with Cr and V additions, mechanical properties and structure, effects of Mo/B atomic ratio, **154**, 263

 $RE_5 Mo_{32}O_{54}$ (RE = La, Ce, Pr, Nd) with trans-capped Mo_8 octahedral clusters and $Mo_7 - Mo_{10} - Mo_7$ triclusters, synthesis, structure, and properties, **152**, 403

 $A_2\text{Mo}_9\text{S}_{11}$ (A = K,Nb), band structure, **155**, 124

 $[Mo_2S_2O_2]^{2+}$ molecular building block, preparation and self-condensation, **152**, 78

 $(NH_4)_{0.13}V_{0.13}Mo_{0.87}O_3$ solid solution, properties, 152, 353

 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural study, **155**, 250 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n=1 to 4), superconducting cluster compounds, synthesis, structure, and theoretical studies, **155**, 417

 Sr_2CrMoO_6 double perovskite, magnetoresistance, 155, 233

Mössbauer spectroscopy

CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, 154, 483

 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, **150**, 159

 A_2 FeNbO₆ (A = Sr,Ba) perovskites, **154**, 591

 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157

InSn oxide powders, 154, 444

manganites: origin of bulk magnetoresistivity, 155, 116

 $Ni_{1-x}Cu_xFeAlO_4$, **149**, 434

 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$: charge ordering and magnetotransport transitions, 153, 140

¹¹⁹Sn dopant atoms in Ca₂Fe₂O₅, **151**, 313

 $\rm Sr_2Fe_2O_5$: structural phase transition under high pressure, **155**, 381 $\rm Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x=1,1.5,2) Ruddlesden–Popper phases, **155**, 96 Mullite

magnetic iron oxide/mullite nanocomposite with stability up to 1400 $^{\circ}$ C, 155, 458

Ν

Nanocomposites

magnetic iron oxide/mullite with stability up to 1400 $^{\circ}$ C, 155, 458 Nanocrystals

 Ag_8SnE_6 (E = S,Se) chalcogenides, synthesis and characterization, 149,

CdSe, with cubic structure, room-temperature synthesis in aqueous solution, 151, 241

CeO₂, X-ray absorption spectroscopy, 149, 408

Co_{0.844}Se, synthesis in nonaqueous solvent, **152**, 537

Cu₂SnS₃, synthesis, characterization, and properties, 153, 170

metal phosphides (metal = Co,Ni,Cu), solvothermal synthesis, 149, 88

γ-NiSb, synthesis by solvothermal coordination–reduction route at low temperature, 155, 42 ZrO₂, tetragonal-monoclinic transition, crystallite size effect in, XRD and Raman spectroscopic study, 149, 399

Nanoparticles

HgS and PbS, sonochemical synthesis, 153, 342

Nanotubes

B₉₆ isomers, ab initio study, **154**, 269

BN, structure and mechanisms of growth and formation, **154**, 214 Negative thermal expansion

in Y₂(WO₄)₃, **149**, 92

Neodymium

Ba₄Nd₂Cd₃Se₁₀, synthesis and structure, **149**, 384

Bi₂Nd₄O₉ monoclinic phase, structure, 153, 30

 $Bi_{2-x}Nd_xRu_2O_{7-y}$ (0 < x < 2) pyrochlores, metal–nonmetal transition in, structural studies, **151**, 25

CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483

Ce_{1-x}Nd_xTiO₃, magnetic properties, 153, 145

 $\text{La}_{2-x}\text{Nd}_x\text{CuO}_4$ (0.6 $\leq x \leq$ 2), pressure-induced phase transitions, **151**, 231

NdB₆, floating zone growth and high-temperature hardness, 154, 238
Nd_{0.4}Ca_{0.6}MnO₃, Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330

NdCo₄B, magnetic properties, 154, 242

 $Nd_4Co_3O_{10+\delta}$ and $Nd_4Ni_3O_{10-\delta}$, crystal structure and properties, 151,

 $Nd_{1.85}^{3.+}M_{0.15}^{2.+}CuO_4$ superconductors, true tolerance factor effects in, 155, 138

Nd₂CuO₄, extended magnetic solids, spin exchange interactions in, **151**, 96

NdCu₃Ti₃FeO₁₂, dielectric constant, **151**, 323

 $NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11-\delta}$ and $NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}$ $O_{14-\delta}$, defect chemistry and electrical properties, **155**, 216

Nd₅Mo₃₂O₅₄, with *trans*-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, synthesis, structure, and properties, **152** 403

Nd₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246

NdNiIn₂, synthesis and crystal structure, 152, 560

NdNiO₃ polycrystalline compounds prepared via different precursors, properties, **151**, 298

NdPdGe, order of Pd and Ge atoms in, 154, 329

NdP₅O₁₄, crystal structure and magnetic properties, 150, 377

Nd₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, 152, 441

 $Nd_2(SiO_4)Te$, monoclinic and orthorhombic crystals, structure, 155, 433

Nd_{2/3}TiO₃, synthesis and magnetic properties, **149**, 354

 $Nd_{1-x}TiO_3$ perovskites, metal-insulator phenomena, 155, 177

Nd₁₆Ti₅S₁₇O₁₇, synthesis and structure, **152**, 554

Nd₇VO₄Se₈, synthesis and characterization, 154, 564

Nd_xWO₃ bronze synthesized under high pressure, X-ray diffraction and electron microscopy, **154**, 466

 $Pr_{1-x}Nd_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145

site preference in hydroxyapatite $[Ca_{10}(PO_4)_6(OH)_2]$, **149**, 391 $Tl(Nd_2Sr_2)Ni_2O_9$, synthesis and structure, **150**, 1

 $(Y,Nd)Al_3(BO_3)_4$ solid solutions, crystal growth and characterization, 154, 317

Neopentane

system with carbon tetrachloride, thermodynamics, 154, 390

Neutron diffraction, see also Powder neutron diffraction

BaBi₃O_{5.5}: crystal growth and structure, 152, 435

CsCo(ND₃)₆(ClO₄)₂Cl₂, single crystal study of orientational disordering between 20 and 290 K, **149**, 60

phase transitions in $CeO_{1.800}$ and $CeO_{1.765}$, 153, 218

YMn₂D_{1.15}, **154**, 398

YMn₂D₂ single phase, synthesis study in situ, 150, 183

Neutron scattering

Sr₄Fe₂O₆CO₃, **152**, 374

Nicke

Ce₂Ni₂Cd, synthesis, structure refinement, and properties, 150, 139

(C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460

 $(Cr_{1-x}Ni_x)_3Te_4$ with pseudo-NiAs-type structure, magnetic properties, **154**, 356

Dy₆NiTe₂, synthesis, structure, and bonding, **155**, 9

effects on calcium phosphate formation, 151, 163

GdNi₃X₂ (X = Al,Ga,Sn), structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, **150**, 62 hydrogen bond-directed hexagonal frameworks based on 1,3,5-benzenet-

ricarboxylate, **152**, 261

KNiF₃ and K₂NiF₄, extended magnetic solids, spin exchange interactions in, **151**, 96

 $\text{La}_{1-x}\text{Eu}_x\text{NiO}_3$ (0 \leq x \leq 1), metal-insulator transition and magnetic properties, **151**, 1

 $\text{La}_3 \text{Ni}_2 \text{O}_7$, neutron diffraction study: structural relationships among phases $\text{La}_{n+1} \text{Ni}_n \text{O}_{3n+1}$ (n=1,2,3), **152**, 517

LiMn₂O₄ spinel oxides stabilized by, electrochemical insertion properties of, effects of partial acid delithiation, **150**, 196

mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

MnO-NiO solid solutions, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357

Mo₂NiB₂ boride base cements with Cr and V additions, mechanical properties and structure, effects of Mo/B atomic ratio, **154**, 263

 $Na_{3.64}Ni_{2.18}(P_2O_7)_2$, crystal structure, 152, 323

 $Nd_4Ni_3O_{10-\delta}$, crystal structure and properties, 151, 46

 RE_5Ni_2X (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; X = Sb,Bi) pnictides, crystal structure and bonding, **152**, 478

 R_2 NiB₁₀ (R = Y,Ce-Nd,Sm,Gd-Ho), synthesis, crystal structure, and magnetic and electrical properties, **154**, 246

Ln-Ni-B-C (Ln = rare earths, Y), chemical and superconducting properties, 154, 114

NiCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113

NiCo₂O₄, XRD, XANES, EXAFS, and XPS study, 153, 74

Ni_{1-x}Cu_xFeAlO₄, Mössbauer effect study, **149**, 434

 $LnNiIn_2$ (Ln = Pr,Nd,Sm), synthesis and crystal structure, 152, 560

 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural study, **155**, 250 $Ni(NH_3)_2X_2$ ($X = Cl_yBr_zI$), preparation and crystal structures, **152**, 381

LnNiO₃ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via different precursors, properties, 151, 298

Ni_{1-x}O/CaO, paracrystal formation upon interdiffusion, **152**, 421

Ni₂P, solvothermal synthesis, 149, 88

 γ -NiSb nanocrystals, synthesis by solvothermal coordination–reduction route at low temperature, **155**, 42

 A_2Ni_2Sn (A = Ce,U), band magnetism, local spin density functional calculations, **149**, 449

NiTa₂Se₇, with incommensurately modulated low-temperature structure, independent \vec{q} and $2\vec{q}$ distortions in, **153**, 152

α-Ni(VO₃)₂·2H₂O and Ni(VO₃)₂·4H₂O, synthesis and crystal structure, **152**, 511

 $Pr_2NiO_{4+\delta},$ oxygen exchange at high temperature and formation of $Pr_4Ni_3O_{10-x},$ 153, 381

 $(Pr_4N)_2Ni(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se), synthesis and structure, **153**, 195

 $(Pr_4N)_2Ni(H_2O)_4[Re_6S_8(CN)_6]$, synthesis and structure, 153, 195

 $SmNi_{1-x}Co_xO_3$, structure, relationship to physical properties, 150, 145

Sr₂NiN₂, synthesis, crystal structure, and physical properties, **154**, 542 Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, **155**, 71

 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La, Pr, Nd, Sm, Eu, Gd), synthesis and structure, **150.** 1

UNi_{1.9}Sn single crystals, growth, crystal structure, and thermopower, **149**, 120

Niobium

Ag₂NbTi₃P₆S₂₅, crystal structure, 153, 55

BaCa_{0.393}Nb_{0.606}O_{2.91}, cation loss in aqueous media leading to amorphization at room temperature, **149**, 262

Ba₂CoNbO₆ perovskite, magnetic transition in, 151, 294

 $\text{Bi}_{2-x}\text{Sr}_{2+x}\text{Ti}_{1-x}\text{Nb}_{2+x}\text{O}_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

 $Ca_4Nb_2O_9 = 3 \cdot Ca(Ca_{1/3}Nb_{2/3})O_3$, perovskite-like polymorphs, octahedral tilting and cation ordering in, **150**, 43

CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483

CaO:Al₂O₃:Nb₂O₅ system, phase equilibria and dielectric properties, 155, 78

(Cr_{1-x}Nb_x)₃B₄ large crystals, synthesis and analysis, **154**, 45

Cu₄Nb₅Si₄, bonding analysis, 154, 384

 A_2 FeNbO₆ (A = Sr,Ba) perovskites, magnetic susceptibility and Mössbauer spectroscopy, **154**, 591

KCa₂Nb₃O₁₀ layered perovskite, crystal structure, 151, 40

 $La_{\sim 10.8}Nb_5O_{20}S_{10}$, synthesis and structure, 152, 348

NbB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 Nb₂Mo₉S₁₁, band structure, **155**, 124

Nb₂N_{0.88}O_{0.12}, synthesis and crystal structure, **150**, 36

 $Nb_{12}O_{29}$, crystal structure and coexistence of localized and delocalized electrons, **149**, 176

 ${
m Nb_7W_{10}O_{47}}$ tetragonal bronze-type phase, superstructure and twinning, 149, 428

niobyl phosphates, intercalates with C_4 diols, preparation and characterization, 151, 225

Pb(Mg_{1/3}Nb_{2/3})O₃, formation via mechanically activated nucleation and growth, **154**, 321

 $0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O_3-0.6Pb(Zn_{1/3}Nb_{2/3})O_3]-0.1PbTiO_3, \quad formation \ via mechanically activated nucleation and growth, \ \textbf{154}, \ 321$

 $(Pb(Mn,Nb)_{0.5}S_{1.5})_{1.15}$ NbS_2 , interlayer charge transfer quantitation via bond valence calculation, **155**, 1

[(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370

 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), synthesis, crystal structure, and physical properties, **152**, 540

Tl₂Nb₂O_{6+x} phases with pyrochlore structure, structure and properties, **155**, 225

Nitrate

exchange with borate or silicate in hydrotalcite, effect of Mg:Al ratio, 151, 272

Nitrogen

Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure of molecular and extended complexes, **152**, 247

Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, structures and magnetic properties, 152, 159

N-benzyl piperidinium dihydrogenmonophosphate, crystal structure and phase transitions, **155**, 298

BN

coating of graphite for protection against oxidation, **154**, 162 crystallinity, effect of molecular precursor structure, **154**, 137

electronic energies and vibration frequencies, quasi-classical determination, **154**, 148

films prepared by MOCVD, 154, 101

nanotubes, structure and mechanisms of growth and formation, **154**, 214

phase diagram, 154, 280

 $B_{12}N_{12},\,B_{24}N_{24},\,$ and $B_{60}N_{60},\,$ semiempirical and molecular dynamics studies, 154, 214

 $^{3}_{\infty}$ [Cd(pdc)(H₂O)] and $^{3}_{\infty}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236

(R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180

(CH₃NH₃)₃Bi₂Cl₉, low-temperature phase transition and structural relationships, 155, 286

 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, hydrothermal synthesis and crystal structure, **155**, 409

 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514

(C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460

 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, hydrothermal synthesis and

characterization, **154**, 514 $[C_2N_2H_{10}]_2Fe_5F_4(PO_4)(HPO_4)_6$, hydrothermal synthesis and 3D

architecture, **154**, 507 $[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}$, isolation and transformation to $[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}$, **150**, 417

[Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280

Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143

coordination polymers with 4,4'-dipyridyldisulfide, synthesis and structure, **152**, 113

CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60

Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, **153**, 185

 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174

[Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141

1,2-dihydro-*N*-aryl-4,6-dimethylpyrimidin-2-ones, C–H···O and C–H···N networks in, **152**, 221

(Fe(CN)₆)³⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332

Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, 152, 229

(H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, 152,

methylamines, intercalation into TiS₂, 155, 326

Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122

 $Nb_2N_{0.88}O_{0.12}$, synthesis and crystal structure, 150, 36

[N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324

NCS⁻ counterion, role in anomalous spin crossover of mechanically strained Fe(II)-1,10-phenanthroline complexes, **153**, 82

[NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, **151**, 145

[NH₃CH₂CH(OH)CH₂NH₃][Co₂(PO₄)₂] and [NH₃CH₂CH(OH)CH₂ NH₃][Co₂(HPO₄)₃], synthesis and crystal structure, **155**, 62

 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, **155**, 37

NH₂(CH₂)₄NH₂V₄O₉, spin exchange interactions of, spin dimer analysis, **153**, 263

 $Ni(NH_3)_2X_2$ (X = Cl,Br,I), preparation and crystal structures, 152, 381

[Pb₆O₄](OH)(NO₃)(CO₃), crystal structure, 153, 365

polymeric Ag(I)-hexamethylenetetramine complexes, structure and topological diversity, 152, 211 polymorphous one-dimensional tetrapyridylporphyrin coordination polymers structurally mimicking aryl stacking interactions, **152**, 253

 $(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O \quad (X = S,Se; \quad M = Mn,Ni), \quad synthesis and structure,$ **153**, 195

 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153**, 195

Sr₂NiN₂, synthesis, crystal structure, and physical properties, **154**, 542 Ti–Ni–Al–N systems, experimental studies, **155**, 71

zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen), as structure directors for, **152**, 286

 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107

 $Zn_4(PO_4)_2(HPO_4)_2\cdot 0.5(C_{10}H_{28}N_4)\cdot 2H_2O,$ hydrothermal synthesis and crystal structure, **154**, 368

 $ZrM(OH)_2(NO_3)_3$ (M = K,Rb), ab initio structure determination from X-ray powder diffraction, **149**, 167

5-Nitrosalicylaldehyde

and diamines, Schiff base ligands derived from, mechanochemical reaction with polymeric oxovanadium(IV) complexes, 153, 9

Nonaqueous solvents

cobalt selenide nanocrystal synthesis in, 152, 537

Nuclear magnetic resonance

¹¹B, phase separation in Na₂O-B₂O₃ glass system, **149**, 459

⁷¹Ga, [NH₃(CH₂)₃NH₃]_{0.5}[M(OH)AsO₄] (M = Ga,Fe), 155, 37

⁶Li, lithium site occupancy in superconductor LiTi₂O₄ and related compounds, 152, 397

⁷Li, ionic distribution in Li-doped BPO₄, **153**, 282

²⁹Si MAS, Y₂Si₂O₇ phase transformations in gel- and mixed-powder-derived polymorphs, 149, 16

Nuclear microprobe

microanalysis of light elements, 154, 301

Nucleation

mechanically activated, in formation of complex perovskites, 154, 321

0

Obituaries

Erwin Rudy, 154, 3

Guri Tsagareishvili, 154, 4

Octahedral tilting

in perovskite-like $Ca_4Nb_2O_9 = 3 \cdot Ca(Ca_{1/3}Nb_{2/3})O_3$ polymorphs, 150, 43

Optical properties

BiSeO₃Cl, nonlinear properties, 149, 236

Eu₃(BO₃)₂F₃, comparison with Ba₂Eu(CO₃)₂F₃, 153, 270

 $In_2O_3-M_2O_3$ (M = Y,Sc) solid solutions doped with Sn, 153, 41

three-coordinate organoboron compounds, linear and nonlinear properties, **154**, 5

ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, **155**, 312

Optical spectroscopy

BaLiF₃ doped with Ce³⁺, **150**, 178

boron-silicon thin films prepared by pulsed laser deposition, **154**, 141 Order-disorder phenomena

 β '- and β -LiZr₂(PO₄)₃ ionic conductors, neutron diffraction study, **152**, 340

 $SrMn_{1-y}(B,C)_yO_{3-\delta}$ perovskite-related oxyborocarbonates, **149**, 226 Order–disorder transitions

Na in Na_xW₁₈O₄₉, **151**, 220

Ordering

antiferromagnetic, long-range, in $BaLaMRuO_6$ (M=Mg,Zn), 150, 383 A-site cation vacancy ordering in $Sr_{1-3x/2}La_xTiO_3$, HRTEM study, 149, 360

1:1 Bi–Sr, 1201 Bi $_{0.4}$ Sr $_{2.6}$ MnO $_{5-\delta}$ and 2201 Bi $_{0.9}$ Sr $_{3.1}$ MnO $_{6-\delta}$ with, synthesis and characterization, **151**, 210

Ca/Bi metal ions in (1 - x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related phases, electron diffraction and XRD studies, **149**, 218

cations in perovskite-like $Ca_4Nb_2O_9 = 3 \cdot Ca(Ca_{1/3}Nb_{2/3})O_3$ polymorphs, 150, 43

incommensurate, Cu/Co in TlCo_{2-x}Cu_xSe₂ ($x \sim 1$) system, 151, 260

La and Sr ions on A cationic sites in $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr, Nd,Sm,Eu,Gd), 150, 1

Na in $Na_xW_{18}O_{49}$: order-disorder transitions, 151, 220

oxygen/fluorine, in rutile-type FeOF, electron diffraction and crystal chemical studies, **155**, 359

short-range, induced by isovalent substitution of Sr^{2+} for Ba^{2+} in $BaMnS_2$, 155, 305

Organic supramolecular materials

polarity, 152, 49

Organoborons

three-coordinate, linear and nonlinear optical properties, **154**, 5 Orientational disordering

CsCo(ND₃)₆(ClO₄)₂Cl₂, single crystal neutron diffraction study between 20 and 290 K, **149**, 60

Osmium

MgOs₃B₄, channel structure, 154, 232

ScOs₃B₄, channel structure, **154**, 232

Oxalato complexes

anionic, intercalation into layered double hydroxides, 153, 301

Oxidation

anosovite at low temperature, M_3O_5 -anatase intergrowth structures formed during, analysis, **150**, 128

 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, **154**, 45 graphite, protection by BN coatings, **154**, 162

Oxide solid solutions

MO-M'O, mixing properties, semi-empirical and ab initio calculations, 153, 357

Oxovanadium(IV) complexes

polymeric, mechanochemical reaction with Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines, **153**, 9

Oxygen

BaBi₃O_{5.5} conducting, crystal growth and structure, 152, 435

exchange in $Pr_2NiO_{4+\delta}$ at high temperature: formation of $Pr_4Ni_3O_{10-x},$ 153, 381

lattice, transfer in fluorite-type oxides containing Ce, Pr, and/or Tb, **155**, 129

nonstoichiometry in La_{0.7}Sr_{0.3}MnO_{3- δ} \square_{δ} (0 \leq δ \leq 0.15), effects on physical properties, **151**, 139

oxygen/fluorine ordering in rutile-type FeOF, electron diffraction and crystal chemical studies, **155**, 359

partial pressure, effects on phase equilibria of Pr₂O₃-Co-Co₂O₃ system, 151, 12

Ρ

Palladium

 RE_5 Pd₂X (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; X = Sb,Bi) pnictides, crystal structure and bonding, 152, 478

Ln-Pd-B-C (Ln = rare earths, Y), chemical and superconducting properties. 154, 114

LnPdGe (Ln = La-Nd,Sm,Gd,Tb), order of Pd and Ge atoms in, 154, 329

 A_2 Pd₂Sn (A = Ce,U), band magnetism, local spin density functional calculations, **149**, 449

Yb₃Pd₄Ge₄, order of Pd and Ge atoms in, 154, 329

Paracrystals

formation from $Ni_{1-x}O$ and CaO upon interdiffusion, 152, 421

```
Paramagnetism
```

 $Ba_6[V_{10}O_{30}(H_2O)] \cdot 2.5H_2O$ with unusual arrangement of V^{IV} -O polyhedra, 151, 130

Sr₂NiN₂, **154**, 542

Perovskites

BaCa_{0.393}Nb_{0.606}O_{2.91}, cation loss in aqueous media leading to amorphization at room temperature, **149**, 262

 $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq$ 1), high-pressure Raman study, **149**, 298 Ba_2CoNbO_6 , magnetic transition in, **151**, 294

 $BaIr_{1-x}Co_xO_{3-\delta}$ (x=0.5,0.7,0.8), structural chemistry and electronic properties, **152**, 361

 $BaLaMRuO_6$ (M = Mg,Zn), atomic and magnetic long-range ordering in, 150, 383

Ba₂YbTaO₆, with ordered structure, magnetic susceptibility, **150**, 31

 $Bi_{4-x}La_xTi_3O_{12}$ (x=1,2) and $Bi_{2-x}Sr_{2+x}Ti_{1-x}Nb_{2+x}O_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

1201 Bi_{0.4}Sr_{2.6}MnO_{5-δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6-δ} with 1:1 Bi-Sr ordering, synthesis and characterization, **151**, 210

 $Ca_4Nb_2O_9=3\cdot Ca(Ca_{1/3}Nb_{2/3})O_3$ polymorphs, octahedral tilting and cation ordering in, **150**, 43

complex, formation via mechanically activated nucleation and growth, 154, 321

 A_2 FeNbO₆ (A = Sr,Ba), magnetic susceptibility and Mössbauer spectroscopy, **154**, 591

KCa₂Nb₃O₁₀, crystal structure, 151, 40

 $\text{La}_{1-x}\text{Eu}_x\text{NiO}_3$ (0 \leq x \leq 1), metal-insulator transition and magnetic properties, **151**, 1

La_{0.5}Pr_{0.5}CrO₃, magnetization reversal, **155**, 447

La₅Re₃MnO₁₆, synthesis, structure, and magnetic behavior, **151**, 31

 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ series, structural characterization, **155**, 455

 $La_{0.7}Sr_{0.3}MnO_{3-\delta}\Box_{\delta}$ (0 $\leq\delta\leq$ 0.15), physical properties, effects of oxygen nonstoichiometry, **151**, 139

 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$), X-ray powder and electron diffraction study, **154**, 427

 $NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11-\delta}$ and $NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}O_{14-\delta}$, defect chemistry and electrical properties, **155**, 216

Nd_{1-x}TiO₃, metal-insulator phenomena, **155**, 177

 $LnNiO_3$ (Ln=Pr,Nd,Sm) polycrystalline compounds prepared via different precursors, properties, 151, 298

Pr_{1-x}Ba_xCoO₃, magnetic order, magnetic circular dichroism spectroscopic study, **152**, 577

 $Pr_{1-x}Sr_xFeO_{3-\delta}$, structure and magnetism, 150, 233

 ${\rm SmNi_{1-x}Co_xO_3}$, structure, relationship to physical properties, 150, 145

 $\rm Sm_{1/3} Sr_{2/3} FeO_{3-\delta},$ charge ordering and magnetotransport transitions, 153, 140

Sm_{1-x}TiO₃, metal-insulator phenomena, **155**, 177

Sr₂CrMoO₆ double perovskite, magnetoresistance, **155**, 233

 $Sr_nFe_nO_{3n-1}$ ($n=2,4,8,\infty$), oxygen-vacancy-ordered crystal structure, evolution and relationship to electronic and magnetic properties, **151**, 190

Sr_{1-3x/2}La_xTiO₃, A-site cation-vacancy ordering in, HRTEM study, **149**, 360

 $SrMn_{1-\nu}(B,C)_{\nu}O_{3-\delta}$, order-disorder phenomena, **149**, 226

 $Sr_3Ru_2O_7$, structural distortions, neutron diffraction study, **154**, 361 $Ln_{2/3}TiO_3$ (Ln = Pr,Nd), synthesis and magnetic properties, **149**, 354

Phase diagram

 $BaCe_xZr_{1-x}O_3 \ (0 \le x \le 1)$ mixed perovskites, **149**, 298

BN, **154**, 280

CaO:Al₂O₃:Nb₂O₅ system, 155, 78

Ca-Rh-O system, 150, 213

Gd₂O₃-B₂O₃, **154**, 204

 $In_2O_3-M_2O_3$ (M=Y,Sc) solid solutions doped with Sn, 153, 41

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, **155**, 280

Mg-Fe-O system, 149, 33

 Pr_2O_3 -Co-Co₂O₃ system, **151**, 12

 $SrO-Ho_2O_3-CuO_x$ system, **149**, 333

Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, **155**, 71 Phase equilibria

CaO:Al₂O₃:Nb₂O₅ system, 155, 78

Hf-B-C system, calculation by thermodynamic modeling, 154, 257

LaCoO₃-LaMnO₃-BaCoO_z-BaMnO₃ system, **153**, 205

La-Mn-O at 1100°C, **153**, 3367

Pr₂O₃-Co-Co₂O₃ system, thermogravimetric study at 1100 and 1150°C, **151**, 12

Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, **155**, 71 Phase relations

 In_2O_3 -TiO₂-MgO system at 1100 and 1350°C, **150**, 276

Phase separation

in Na₂O-B₂O₃ glass system, NMR study, 149, 459

Phase stability

Al₃BC₃ at high pressure, **154**, 254

Mg-Fe-O system, 149, 33

Phase transition

anatase, induced by ball-milling, kinetics and mechanisms, **149**, 41 antifluorite to anticotunnite in Li₂S at high pressures, **154**, 603

N-benzyl piperidinium dihydrogenmonophosphate, **155**, 298

to Bi_{1-v}La_vO_{1.5} monoclinic solid solution, **151**, 281

 Bi_2MoO_6 catalyst, high-temperature incommensurate-to-commensurate transition, **155**, 206

BiZn₂PO₆, 153, 48

CeO_{1.765} and CeO_{1.800}, single-crystal neutron diffraction studies, **153**,

t'_{meta}-(Ce_{0.5}Zr_{0.5})O₂ phase prepared by reduction and successive oxidation of t' phase, effect on electrical conductivity, **151**, 253

(CH₃NH₃)₃Bi₂Cl₉ at low temperature, 155, 286

CsCo(ND₃)₆(ClO₄)₂Cl₂ orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60

Cs2KMnF6

crystal structures of low- and high-temperature modifications, **150**, 399

at high pressure, 153, 248

GaPO₄, 149, 180

GeSe₂ three-dimensional crystals at high pressures and temperatures, 150, 121

LaBaCuGaO₅ under high pressure, 155, 372

 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, 155, 455

LiTi₂O₄ spinel to ramsdellite, Li site occupancy in, NMR study, **152**, 397 Li₂Ti₃O₇, R phase to H phase, **152**, 546

NiTa₂Se₇ with incommensurately modulated low-temperature structure, **153**, 152

orthorhombic LaCrO₃, neutron powder diffraction study, **154**, 524

Pb₅Al_{2.96}Cr_{0.04}F₁₉, ferroelastic phase, **155**, 427

pressure-induced, $Ln_{2-x}Nd_xCuO_4$ for Ln = La (0.6 $\leq x \leq$ 2) and Ln = Pr (x = 0), 151, 231

SrC₂, **151**, 111

Sr₂Fe₂O₅ under high pressure, **155**, 381

TlTe: crystal structure, 149, 123

Y₂Si₂O₇, in gel- and mixed-powder-derived polymorphs, X-ray diffraction and ²⁹Si MAS NMR studies, 149, 16

ZrO₂ nanocrystals, tetragonal-monoclinic transition, crystallite size effect in, XRD and Raman spectroscopic study, 149, 399

pH-controlled synthesis

 ${}_{\infty}^{3}$ [Cd(pdc)(H₂O)] and ${}_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], **152**, 236

Phenanthrene

[Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280

Phenanthroline

complexes with Cu or Mn, functionalized MCM-41 containing, synthesis and characterization, **152**, 447

1,10-Phenanthroline

complexes with Fe(II), anomalous spin crossover associated with mechanical strain, role of NCS⁻ and PF₆ counterions, **153**, 82

intercalation compound with layered MnPS₃, synthesis, characterization, and magnetic properties, **150**, 281

intercalation reaction with layered FePS₃, 150, 258

Phonons

analysis in tetragonal CdAl₂Se₄, 153, 317

boron carbide enriched in 10 B, 11 B, and 13 C isotopes, IR spectra, **154**, 79 electron–phonon interaction in β -rhombohedral boron doped with metal, **154**, 13

interactions with sliding charge-density waves, 155, 105

metal hexaborides, IR spectra, 154, 87

optical, B₄₈Al₃C₂, 154, 75

rare-earth hexaborides, 154, 275

 β -rhombohedral boron modified isotopically, **154**, 296

Phosphors

 $BaHf_{1-x}Zr_x(PO_4)_2$ emitting ultraviolet under X-ray excitation, **155**, 229 $CaIn_2O_4$, activated by Pr, luminescence properties, **155**, 441

self-activated, ZnGa₂O₄, luminescent properties, systematic tuning by Cd²⁺ substitution, **150**, 204

Phosphorus

Ag₂NbTi₃P₆S₂₅, crystal structure, **153**, 55

AgTi₂(PS₄)₃, crystal structure and ionic conductivity, 153, 55

apatite-related phosphates, synthesis and characterization, 149, 133

 $BaHf_{1-x}Zr_x(PO_4)_2$, UV-emitting X-ray phosphor, **155**, 229

N-benzyl piperidinium dihydrogenmonophosphate, crystal structure and phase transitions, **155**, 298

Bi_{6.67}O₄(PO₄)₄, existence of, **154**, 435

BiZn₂PO₆, crystal structure, **153**, 48

boron phosphide films

preparation by photo- and thermal chemical vapor deposition processes, **154**, 39

thermoelectric properties, 154, 26

 $B_{12}P_2$ wafers, electrical and thermal properties, 154, 33

BPO₄ doped with Li, ionic distribution in, NMR study, **153**, 282 calcium phosphate, formation, effects of Ni, **151**, 163

Ca_{9.75}[(PO₄)_{5.5}(CO₃)_{0.5}]CO₃, A-type carbonate apatite, structure analysis by single-crystal X-ray diffraction, **155**, 292

[Ca₁₀(PO₄)₆(OH)₂] hydroxyapatite, site preference of rare earth elements in, 149, 391

 $Ca_6Sm_2Na_2(PO_4)_6F_2$, crystal structure and polarized Raman spectra, 149, 308

Cd₅(PO₄)₃Br and Cd₅(PO₄)₃I apatites, incommensurate modulation, **150**, 154

(R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180

 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514

(C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460

 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, hydrothermal synthesis and characterization, **154**, 514

[C₂N₂H₁₀]₂Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507

$$\begin{split} &[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}, isolation \ and \ transformation \ to \\ &[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}, \ \textbf{150}, \ \textbf{417} \end{split}$$

Cs₂CuP₃S₉, chiral compound with chiral screw helices, preparation, structure, and characterization, **151**, 326

Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, 153, 185

 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, synthesis and structure, 150, 159

Cu^I_{0.5}Mn^{II}_{0.25}Zr₂(PO₄)₃ Nasicon-type phosphate, structure and lumines-cence, **152**, 453

 $(RE_{m+n})(Cu_2P_3)_m(Cu_4P_2)_m$, relationship to other rhombohedral rare earth copper phosphides, **151**, 150

 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies, **150**, 188

β-Fe₂(PO₄)O and Fe₄(PO₄)₃(OH)₃, solid solution series between, synthesis and phase characterization, **153**, 237

FePS₃, layered compound, intercalation reaction with 1,10-phenanthroline, **150**, 258

GaPO₄, structural phase transformations, 149, 180

 $\text{Ho}_2\text{Cu}_{6-x}\text{P}_{5-y}$, crystal structure and $(RE_{m+n})(\text{Cu}_2\text{P}_3)_m(\text{Cu}_4\text{P}_2)_n$ relationship to other rhombohedral rare earth copper phosphides, **151**, 150

LiZr₂(PO₄)₃, β' and β phases, order-disorder and mobility of Li⁺ in, neutron diffraction study, 152, 340

metal phosphides (metal = Co,Ni,Cu), solvothermal synthesis, 149,

MnPS₃, intercalation compound with 1,10-phenanthroline, synthesis, characterization, and magnetic properties, **150**, 281

Na_{2-x}Ag_xZnP₂O₇, Ag(I) luminescence in, **149**, 284

Na₄Co₃H₂(PO₄)₄·8H₂O, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292

Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, 151, 122

Na₃In(PO₄)₂, polymorphous modifications, structure, 149, 99

Na_{3.64}Mg_{2.18}(P₂O₇)₂, crystal structure, **152**, 323

Na_{3.64}Ni_{2.18}(P₂O₇)₂, crystal structure, **152**, 323

Na_{1.5}Pb_{0.75}PSe₄ with cubic structure, flux synthesis and isostructural relationship to Na_{0.5}Pb_{1.75}GeS₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158

NaSb₃O₂(PO₄)₂, synthesis and structure, 151, 21

Na₂ZnP₂O₇, crystal structure, 152, 466

[N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324

[NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, **151**, 145

 $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(PO_4)_2] \quad \text{and} \quad [NH_3CH_2CH(OH) \\ CH_2NH_3][Co_2(HPO_4)_3], \text{ synthesis and crystal structure, } \textbf{155, } 62$

niobyl phosphates, intercalates with C_4 diols, preparation and characterization, 151, 225

open-framework metal phosphates, preparation from amine phosphates and monomeric four-membered ring phosphate, **152**, 302

PbBi₆O₄(PO₄)₄, existence of, **154**, 435

Pb₅Bi₁₈P₄O₄₂, crystal structure, 151, 181

PbVO₂PO₄, α -layered and β -tunnel structures, 149, 149

PF₆⁻ counterion, role in anomalous spin crossover of mechanically strained Fe(II)-1,10-phenanthroline complexes, **153**, 82

(P₂O₇)⁴⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332

RP₅O₁₄ (R = La,Nd,Sm,Eu,Gd), crystal structures and magnetic properties. 150, 377

Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), synthesis and structure, X-ray single crystal and neutron powder diffraction studies, 149, 9

 $\mathrm{Sb_5PO_{10}}$, synthesis and structure, 155, 451 $\mathrm{SiP_2O_7}$, comparison with $\mathrm{Na_2}M_2(\mathrm{BO_3})_2\mathrm{O}$ ($M=\mathrm{Al},\mathrm{Ga}$), 154, 344

 SiP_2O_7 , comparison with $Na_2M_2(BO_3)_2O$ (M = Al,Ga), **154**, 344 γ -SrHPO₄, synthesis and crystal structure, **152**, 428

α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, 154, 557

TlZn(PO₃)₃, structure and luminescence, 154, 584

vanadyl phosphate intercalates

with acetone, structural analysis, 150, 356

with C₄ diols, preparation and characterization, 151, 225

(V^{IV}O)₂(H₂O){O₃P-(CH₂)₃-PO₃}·2H₂O, hydrothermal synthesis, structure, and magnetic behavior, **155**, 238

(VO)₂P₂O₇, single crystal growth at 3 GPa, 153, 124

W₂O₃ · P₂O₇ with empty tunnel structure, stabilization, **155**, 112

 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107

 $Zn_4(PO_4)_2(HPO_4)_2\cdot 0.5(C_{10}H_{28}N_4)\cdot 2H_2O,$ hydrothermal synthesis and crystal structure, **154**, 368

ZrPOF-*n* family with 2D and 3D structure types, synthesis and crystal structures **149**, 21

Photoconductivity

modulated, β -rhombohedral carbon of high purity and doped with carbon, **154**, 93

steady-state interband, high-purity β -rhombohedral boron, **154**, 68 Photoluminescence

BaLiF₃ doped with Ce³⁺, 150, 178

CaIn₂O₄ phosphors activated by Pr, 155, 441

conjugated molecule doped in polymer, effect of excimer behavior, **153**, 192

 β -rhombohedral boron of high purity, **154**, 68

ZnGa₂O₄ self-activated phosphors, systematic tuning by Cd²⁺ substitution, **150**, 204

Piperazine

 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4]\cdot 3H_2O$ and $(C_4H_{12}N_2)$ $[(VO)(VO_2)_2(H_2O)(PO_4)_2],$ hydrothermal synthesis and characterization, **154**, 514

intercalation into α -titanium hydrogenphosphate, structural and calorimetric study, **154**, 557

Piperazinium(2+) selenate monohydrate

crystal structure, vibrational spectra, and thermal behavior, **150**, 305 Piperidine

intercalation into α-titanium hydrogenphosphate, structural and calorimetric study, **154**, 557

Plasma vibrations

metal hexaborides, 154, 87

Platinum

 $Yb_2Pt_3Sn_5$ -type stannides, synthesis, structure, and magnetic measurements, **150**, 112

Pnictides

rare-earth-rich RE_5M_2X (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; M = Ni,Pd; X = Sb,Bi), crystal structure and bonding, **152**, 478

Point group symmetry

in design of functional crystals, 152, 191

Polarity

formation in organic supramolecular materials, 152, 49

Polycondensation

 $[Mo_2S_2O_2]^{2+}$ molecular building block, 152, 78

Polycyclic aromatic molecules

neutral molecular railroad coordination polymers incorporating, synthesis and crystal structure, **152**, 280

Polymerization

solid-state, sodium propynoate, induction by gamma radiation, **152**, 99 Polymers

coordination, see Coordination polymers

three-coordinate boron-containing conjugated polymers, linear and nonlinear optical properties, **154**, 5

Polyol media

preparation of metallic powders and alloys in, thermodynamic approach, **154**, 405

Polyoxometalates

extended solids composed of, synthesis, structure, and physicochemical properties, **152**, 105

solid preparation from $[Mo_2S_2O_2]^{2+}$ molecular building block, 152,

synthon-based building blocks for control of growth of solid-state materials, **152**, 57

Polyoxotungstates

thermal decomposition, in preparation of tungsten bronzes, 149, 378 Polystyrene

conjugated molecule doped in, photoluminescence and electroluminescence, effect of excimer behavior, **153**, 192

Polythiometallates

1-D coordination compounds, synthesis, structure, and electrical properties, 151, 286

Porphyrins

microporous materials, construction, 152, 87

Potassium

Cs₂KMnF₆, phase transition

crystal structures of low- and high-temperature modifications, **150**, 399

at high pressure, 153, 248

 KMQ_2 (M = Al,Ga; Q = Se,Te) chalcogenides with stacking faults, synthesis and structure, **149**, 242

KBi₂CuS₄, structure and conductivity, 155, 243

K₂CaNaTa₃O₁₀ Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, 155, 46

KCa₂Nb₃O₁₀ layered perovskite, crystal structure, 151, 40

K₂Ca₂Ta₂TiO₁₀·0.8H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, 155, 46

KCuF₃ and K₂CuF₄, extended magnetic solids, spin exchange interactions in, **151**, 96

K₃Hg₁₁ and K₇Hg₃₁, synthesis and structure, **149**, 419

K₂MnF₅·H₂O, neutron diffraction study, **150**, 104

K_{0.3}MoO₃, interactions of sliding charge-density waves with phonons, **155**, 105

 $K_{1.8}Mo_9S_{11}$ and $K_2Mo_9S_{11}$, band structure, 155, 124

KNiF₃ and K₂NiF₄, extended magnetic solids, spin exchange interactions in, 151, 96

 $K_{7.62(1)}Si_{46}$, synthesis and structure, 154, 626

K₂SrLaTi₂TaO₁₀ · 2H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46

 $K_6(UO_2)_5(VO_4)_2O_5$, synthesis and crystal structure, 155, 342

 $La(H_2O)_2K(C_2O_4)_2 \cdot H_2O$, crystal structure and thermal behavior, 150, 81

 $Sr_{0.4}K_{0.6}BiO_3$, structure determination as function of temperature from synchrotron X-ray powder diffraction data, **150**, 316

Sr_{3.75}K_{1.75}Bi₃O₁₂, synthesis and characterization, **152**, 492

ZrK(OH)₂(NO₃)₃, ab initio structure determination from X-ray powder diffraction, **149**, 167

Powder neutron diffraction

 $Ca_{4.78}Cu_6O_{11.60}$ crystal structure, 151, 170

 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), **150,** 188

 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157

intermediate cubic phase crystallized from Synroc alkoxide precursor at $800\ ^{\circ}\text{C},\ 150,\ 209$

 $K_2MnF_5 \cdot H_2O$, 150, 104

LaCrO₃ structural phase transition, **154**, 524

 $La_3Ni_2O_7$: structural relationships among phases $La_{n+1}Ni_nO_{3n+1}$ (n = 1,2,3), 152, 517

La₅Si₂BO₁₃, **155**, 389

Li₂Ti₃O₇ H phase engineered scavenger compound, 152, 546

β'- and β-LiZr₂(PO₄)₃: order-disorder and mobility of Li⁺, **152**, 340

Na₂Ti₂Sb₂O: structure-property relationships, **153**, 275

Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), 149, 9

Ru pyrochlores undergoing metal-nonmetal transition, 151, 25

Sr₄Fe₂O₆CO₃, **152**, 374

Sr₃Ru₂O₇: structural distortions, **154**, 361

TIF, 150, 266

Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y-derived superstructure, **155**, 22

 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr,Nd,Sm,Eu,Gd), **150,** 1

Powder X-ray diffraction

Cu₂Gd_{2/3}S₂: interlayer short-range order of Gd vacancies, **152**, 332 GaPO₄ structural phase transformations, **149**, 180

 $(Hg,M)Sr_2(Ln,Ce)_2Cu_2O_z$ 1222-type superconductors, **154**, 488

intermediate cubic phase crystallized from Synroc alkoxide precursor at $800~^{\circ}\text{C},\,\textbf{150},\,209$

 $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O(M = K,NH_4)$: crystal structure and thermal behavior, **150**, 81

 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, **155**, 455

Li₂S: reversible antifluorite to anticotunnite phase transition at high pressures, **154**, 603

Li₂Ti₃O₇ H phase engineered scavenger compound, **152**, 546

Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D incommensurate modulation, **152**, 573

 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, **154**, 427 1,10-phenanthroline intercalation

into FePS₃ layered compound, 150, 258

into MnPS₃ layered compound, 150, 281

Ru pyrochlores undergoing metal-nonmetal transition, 151, 25

 $Sr_{1.25}Bi_{0.75}O_3$ and $Sr_{0.4}K_{0.6}BiO_3$, structure determination as function of temperature, **150**, 316

SrC₂, 151, 111

Sr₂Fe₂O₅: structural phase transition under high pressure, **155**, 381 Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_v-derived superstructure, **155**, 22

 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr,Nd,Sm,Eu,Gd), 150, 1

vanadyl phosphate intercalated with acetone, 150, 356

 RE_xWO_3 (RE = La,Nd) synthesized under high pressure, **154**, 466

YB₆₆: effects of transition metal doping, **154**, 54

 $ZrM(OH)_2(NO_3)_3$ (M = K,Rb), ab initio structure determination, 149, 167

Power factor

 β -rhombohedral boron doped with metal, **154**, 13

Praseodymium

BaPr₂MnS₅, crystal structure and magnetic properties, 153, 330

 $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$ ceramics, sintering and conductivity, effect of particle size, **155**, 273

CaIn₂O₄ phosphors activated by, luminescence properties, **155**, 441 fluorite-type oxides containing, lattice oxygen transfer in, **155**, 129

La_{0.5}Pr_{0.5}CrO₃, magnetization reversal, **155**, 447

PrB₆, floating zone growth and high-temperature hardness, 154, 238

Pr_{1-x}Ba_xCoO₃ perovskite, magnetic order, magnetic circular dichroism spectroscopic study, 152, 577

Pr_{0.4}Ca_{0.6}MnO₃, Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330

PrCo₄B, magnetic properties, 154, 242

Pr₂CuO₄, pressure-induced phase transitions, 151, 231

Pr₅Mo₃₂O₅₄, with *trans*-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, synthesis, structure, and properties, **152**, 403

 $\Pr_{1-x}Nd_xTiO_3$ ($0 \le x \le 1$) solid solutions, magnetic properties, **153**, 145 (\Pr_4N)₂ $M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se; M = Mn,Ni), synthesis and structure, **153**, 195

 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153.** 195

Pr₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246

PrNiIn₂, synthesis and crystal structure, 152, 560

PrNiO₃ polycrystalline compounds prepared via different precursors, properties, 151, 298

 $Pr_2NiO_{4+\delta},$ oxygen exchange at high temperature and formation of $Pr_4Ni_3O_{10-x},$ 153, 381

Pr₂O₃, redox reaction in ZnO sintered ceramics, 149, 349

 Pr_2O_3 -Co- Co_2O_3 system, thermogravimetric study at 1100 and 1150°C, **151**, 12

PrPdGe, order of Pd and Ge atoms in, 154, 329

PrRhIn, synthesis and properties, 152, 560

Pr₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, 152, 441

 $Pr_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145

 $Pr_{1-x}Sr_xFeO_{3-\delta}$, structure and magnetism, **150**, 233

Pr_{2/3}TiO₃, synthesis and magnetic properties, 149, 354

 $Tl(Pr_2Sr_2)Ni_2O_9$, synthesis and structure, **150**, 1

ZrSiO₄ doped with, hyperfine characterization, **150**, 14

Precipitation

CdSe cubic nanocrystals in aqueous solution at room temperature, **151**, 241

Pressure effects

Cs₂CoCl₄ and Cs₂CuCl₄, X-ray diffraction studies, **153**, 212 phase transitions

LaBaCuGaO₅ under high pressure, 155, 372

 $Ln_{2-x}Nd_xCuO_4$ for $Ln = La~(0.6 \le x \le 2)$ and Ln = Pr~(x = 0), 151, 231

Sr₂Fe₂O₅ under high pressure, **155**, 381

TIF crystal structure, 150, 266

Proceedings of the 13th International Symposium on Boron, Borides, and Related Compounds, preface, **154**, 1

Proton exchange

Ruddlesden-Popper tantalates and titanotantalates, **155**, 46 *p*-type thermoelectric

 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}(x=2)$, synthesis and characterization, **151**, 61 Pulsed laser deposition

boron-silicon thin film preparation, 154, 141

Pyrazine

intercalation into α-titanium hydrogenphosphate, structural and calorimetric study, **154**, 557

Pyrazoledicarboxylate

 $^{3}_{\infty}$ [Cd(pdc)(H₂O)] and $^{3}_{\infty}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236

Pyrochlores

Bi₂Pb₂O₇, hydrothermal synthesis and characterization, 149, 314

CaNdFe_{1/2}Nb_{3/2}O₇, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483

In₂O₃-M₂O₃ (M = Y,Sc) solid solutions doped with Sn, electrical, optical, and structural properties, 153, 41

rare-earth oxides, structural determination by wide-angle CBED, comparison with atomistic computer simulation, 153, 16

Ru pyrochlores

metal-nonmetal transition in, structural studies, 151, 25

 $R_2Ru_2O_7$ (R= rare earths), specific heat and ac susceptibility, 152, 441

 $Tl_2Nb_2O_{6+x}$, structure and properties, 155, 225

Pyrophosphate

Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332

Q

Quasicrystals

B₉₆ isomers, ab initio study, **154**, 269

R

Raman spectroscopy

 $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq$ 1) mixed perovskites, high-pressure study, **149**, 298

B₄₈Al₃C₂, phonon spectra and frequencies, **154**, 75

N-benzyl piperidinium dihydrogenmonophosphate, 155, 298

CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent study, **154**, 338

 $Cs_2CuP_3S_9$, chiral compound with chiral screw helices, **151**, 326 N,N'-dimethylpiperazinium(2+) selenate dihydrate, **150**, 305

LiH₅TeO₆, **150**, 410

LiIn(MoO₄)₂, **154**, 498

Li₂S: reversible antifluorite to anticotunnite phase transition at high pressures, 154, 603

piperazinium(2+) selenate monohydrate, **150**, 305

polarized, Ca₆Sm₂Na₂(PO₄)₆F₂, **149**, 308

seven-coordinated diaquasuccinatocadmium(II) bidimensional polymer, 153 1

Sr(OH)Br, analysis of hydroxide ion disorder, 151, 267

ZrO₂ nanocrystals: crystallite size effect on tetragonal-monoclinic transition, 149, 399

Ramsdellite

LiTi₂O₄, formation from spinel, Li site occupancy in, NMR study, **152**, 397

 $\text{Li}_{2+x}\text{Ti}_3\text{O}_7$ obtained electrochemically, structural study, 153, 132 Redox properties

coordination polymers with 4,4'-dipyridyldisulfide, **152**, 113

 $Pr_{1-x}Sr_xFeO_{3-\delta}$, **150**, 233

transition metal ions of group VIB in rutile ${\rm TiO_2}$ solid solutions, XRD and EPR study, 152, 412

Redox reaction

Pr₂O₃ in ZnO sintered ceramics, **149**, 349

Reduction

Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, 152, 526

WO₃ by CH₄-H₂ mixture, **154**, 412

Relaxor ferroelectrics

formation via mechanically activated nucleation and growth, **154**, 321 Resorcin[4]arenes

based on cavity-containing materials, design strategies, **152**, 199 Rhenium

(Hg,Re)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

 $\text{La}_5\text{Re}_3\text{MnO}_{16}$, synthesis, structure, and magnetic behavior, **151**, 31 $(\text{Pr}_4\text{N})_2M(\text{H}_2\text{O})_5[\text{Re}_6X_8(\text{CN})_6]\cdot\text{H}_2\text{O}$ $(X=\text{S},\text{Se};\ M=\text{Mn},\text{Ni})$, synthesis and structure, **153**, 195

 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153**, 195

 $Sr_{11}Re_4O_{24}$ double oxide, preparation, structure, and magnetic studies, 149, 49

Rhenium chalcocyanide clusters

transformation of isolated fragments to infinite chains, **153**, 195 Rhodium

Ca-Rh-O system, chemical potential and Gibbs energy of formation measurements, solid state cells with buffer electrodes for, 150, 213

PrRhIn, synthesis and properties, 152, 560

Rh(II) monocarboxylate, microporous material, synthesis and gas occlusion properties, **152**, 120

Ti₃Rh₂In₃, structure, chemical bonding, and properties, **150**, 19

 $Rb_5Au_3O_2$ and $Rb_7Au_5O_2$, syntheses, structures, and properties, 155, 29 $Rb_3Bi_5Cu_2S_{10}$, structure and conductivity, 155, 243

Rb₂[B₄O₅(OH)₄] · 3.6H₂O, crystal structure and thermal behavior, **149**,

 $RbLn_2CuSe_4$ (Ln = Sm,Gd,Dy), synthesis and structures, 151, 317

 $Rb_{1.5}Ln_2Cu_{2.5}Se_5$ (Ln = Gd,Dy), synthesis and structure, 151, 317

Rb₃Hg₂₀ and Rb₇Hg₃₁, synthesis and structure, **149**, 419

 $Rb_2(HSO_4)(H_2PO_4)$ and $Rb_4(HSO_4)_3(H_2PO_4)$, synthesis and structure, X-ray single crystal and neutron powder diffraction studies, **149**, 9 $Rb_2Mo_9S_{11}$, band structure, **155**, 124

 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n=1 to 4), superconducting cluster compounds, synthesis, structure, and theoretical studies, **155**, 417

Rb₈Na₁₆Ge₁₃₆ and Rb₈Na₁₆Si₁₃₆ clathrates, synthesis and characterization. 153, 92

Rb₂Sb₈S₁₃·3.3H₂O, hydrothermal synthesis and crystal structure, **155**, 409

 $Rb_{6.15(2)}Si_{46}$, synthesis and structure, 154, 626

RbSm₂Ag₃Se₅, synthesis and structure, **151**, 317

ZrRb(OH)₂(NO₃)₃, ab initio structure determination from X-ray powder diffraction, 149, 167

Ruddlesden-Popper phases

 $\text{La}_{n+1}\text{Ni}_n\text{O}_{3n+1}$ (n=1,2,3), structural relationships among phases, neutron diffraction study, **152**, 517

 Nd_4MO_{10} (M = Co,Ni), crystal structure and properties, **151**, 46 $Sr_4Fe_2O_6CO_3$, synthesis, crystal structure, and magnetic order, **152**,

 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x = 1,1.5,2), properties, **155**, 96

tantalates and titanotantalates, synthesis, proton exchange, and topochemical dehydration, **155**, 46

Ruthenium

BaLaMRuO₆ (M = Mg,Zn), atomic and magnetic long-range ordering in. **150**, 383

BaRuO₃, bond valence analysis, 151, 245

Ba₄Ru₃O₁₀, crystal structure and compressibility, **149**, 137

Ca_{3.1}Cu_{0.9}RuO₆, synthesis, structural chemistry, and magnetic properties, 153, 254

ferromagnetism and metallicity induced by, in Mn(IV)-rich $Ln_{0.4}Ca_{0.6}MnO_3$ (Ln = La, Pr, Nd, Sm), 151, 330

La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈, geometric frustation in, 155, 189

Ru dicarboxylates, microporous materials, synthesis and gas occlusion properties, **152**, 120

Ru pyrochlores

metal-nonmetal transition in, structural studies, 151, 25

 $R_2 Ru_2 O_7$ (R = rare earths), specific heat and ac susceptibility, 152, 441

Sm_{0.2}Ca_{0.8}MnO₃ doped with, micronanostructures, correlation with magnetic transitions, 155, 15

 $Sr_3Ru_2O_7$, structural distortions, neutron diffraction study, 154, 361 Rutile

FeOF, oxygen/fluorine ordering in, electron diffraction and crystal chemical studies, 155, 359

Ge-substituted SnO_2 , sol-gel synthesis and characterization, **154**, 579 solid solutions, redox behavior of VIB transition metal ions in, XRD and EPR study, **152**, 412

S

Samarium

Ba₄Sm₂Cd₃S₁₀, synthesis and structure, **149**, 384

BaSm₄(SiO₄)₃Se, crystal structure, 155, 433

 $Ba_{1-x}Sm_xSO_4$, Sm^{2+} crystal chemistry and stability in, 154, 535

Ca₆Sm₂Na₂(PO₄)₆F₂, crystal structure and polarized Raman spectra, **149.** 308

 $Ca_2Ta_2O_7$ - $Sm_2Ti_2O_7$ system, syntheses in, structures, and crystal chemistry, **150**, 167

 $Ce_{1-x}Sm_xTiO_3$ (0 $\le x \le 1$) solid solutions, magnetic properties, 153, 145

(Hg,M)Sr₂(Sm,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3$ $(0 \le x \le 1)$ solid solutions, magnetic properties, 153, 145

 $Pr_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145

RbSm₂Ag₃Se₅, synthesis and structure, **151**, 317

RbSm₂CuSe₄, synthesis and structures, **151**, 317

site preference in hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂], **149**, 391

SmB₆, floating zone growth and high-temperature hardness, 154, 238

 SmB_6 and $Sm_{0.8}B_6$, interband transitions, IR-active phonons, and plasma vibrations, 154, 87

Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru, micronanostructures, correlation with magnetic transitions, 155, 15

Sm_{0.4}Ca_{0.6}MnO₃, Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330

SmCo₄B, magnetic properties, 154, 242

SmCu₃Ti₃FeO₁₂, dielectric constant, 151, 323

Sm_{2/3}Cu₃Ti₄O₁₂, dielectric constant, **151**, 323

 $Sm_{(1-x)}Gd_xTiO_3$, magnetism, **154**, 619

Sm₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246

SmNi_{1-x}Co_xO₃, structure, relationship to physical properties, **150**, 145 SmNiIn₂, synthesis and crystal structure, **152**, 560

SmNiO₃ polycrystalline compounds prepared via different precursors, properties, **151**, 298

SmPdGe, order of Pd and Ge atoms in, 154, 329

SmP₅O₁₄, crystal structure and magnetic properties, **150**, 377

Sm₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, **152**, 441

Sm₂(SiO₄)Te, monoclinic and orthorhombic crystals, structure, **155**, 433 SmSO₄, Sm²⁺ crystal chemistry and stability in, **154**, 535

 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, charge ordering and magnetotransport transitions, 153, 140

Sm_{1-x}TiO₃ perovskites, metal-insulator phenomena, 155, 177

Sm₇VO₄Se₈, synthesis and characterization, 154, 564

Sr_{1-x}Sm_xSO₄, Sm²⁺ crystal chemistry and stability in, **154**, 535

Tl(Sm₂Sr₂)Ni₂O₉, synthesis and structure, **150**, 1

Scale chemistry

with building units, 152, 37

Scandium

In₂O₃-Sc₂O₃ solid solutions doped with Sn, electrical, optical, and structural properties, **153**, 41

Sc₂AlB₆, crystal growth and structure, 154, 49

ScB₁₇C_{0.25}, single-crystal XRD and TEM study, **154**, 130

ScOs₃B₄, channel structure, **154**, 232

Scanning electron microscopy

InSn oxide powders, 154, 444

Scanning tunneling microscopy

[(Pb,Sb)S]_{2.28}NbS₂ Franckeite-type misfit compounds: distribution of Pb and Sb atoms in (Pb,Sb)S layers, **149**, 370

Schiff base ligands

derived from 5-nitrosalicylaldehyde and diamines, mechanochemical reaction with polymeric oxovanadium(IV) complexes, 153, 9

rigid or flexible, and Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143

Seebeck coefficient

 $NdDyBa_{2-x}Sr_{x}Cu_{2+y}Ti_{2-y}O_{11-\delta} \ \ and \ \ NdDyCaBa_{2-x}Sr_{x}Cu_{2+y}Ti_{3-y}\\O_{14-\delta}, \ \textbf{155}, \ 216$

 β -rhombohedral boron doped with metal, **154**, 13

YB₄₁Si_{1.2}, 154, 229

Selected area electron diffraction

 Bi_2O_3 -MoO₃ system: compounds with structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, 149, 276

Selenium

Ag₈SnSe₆ chalcogenides, synthesis and characterization, 149, 338

Ba₄Nd₂Cd₃Se₁₀, synthesis and structure, **149**, 384

BaSm₄(SiO₄)₃Se, crystal structure, 155, 433

BiSeO₃Cl, crystal structure and dielectric and nonlinear optical properties, **149**, 236

CdAl₂Se₄, zone center frequencies in tetragonal phase, 153, 317

CdCr₂Se₄ spinels, electronic band structure, 155, 198

CdSe cubic nanocrystals, room-temperature synthesis in aqueous solution, 151, 241

Co_{0.844}Se nanocrystals, synthesis in nonaqueous solvent, **152**, 537

GeSe₂ three-dimensional crystals, structural transformations at high pressures and temperatures, **150**, 121

Hg₃Se₂I₂, synthesis and crystal structure, **151**, 73

 $KMSe_2$ (M = Al,Ga) chalcogenides with stacking faults, synthesis and structure, **149**, 242

mesostructured 3D materials based on [Ge₄Se₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

Na_{1.5}Pb_{0.75}PSe₄ with cubic structure, flux synthesis and isostructural relationship to Na_{0.5}Pb_{1.75}GeS₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158

 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural study, 155, 250

NiTa₂Se₇, with incommensurately modulated low-temperature structure, independent \vec{q} and $2\vec{q}$ distortions in, 153, 152

 $(Pr_4N)_2M(H_2O)_5[Re_6Se_8(CN)_6] \cdot H_2O$ (M = Mn,Ni), synthesis and structure, **153**, 195

 $RbLn_2CuSe_4$ (Ln = Sm,Gd,Dy), $Rb_{1.5}Ln_2Cu_{2.5}Se_5$ (Ln = Gd,Dy), and $RbSm_2Ag_3Se_5$, synthesis and structures, **151**, 317

Sr₄Cu₂Mn₃O_{7.5}Se₂, synthesis and structure, **153**, 26

 $TICo_{2-x}Cu_xSe_2$ ($x \sim 1$) system, incommensurate Cu/Co ordering in, 151, 260

 Ln_7 VO₄Se₈ (Ln = Nd,Sm,Gd), synthesis and characterization, **154**, 564 Semiconductors

mesostructured 3D materials based on [Ge₄S₁₀]⁴⁻ and [Ge₄Se₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

p-type, CeVO₄ with zircon-type structure prepared by solid-state reaction in air, 153, 174

sensitization by microcrystals of MgIn₂S₄ on wide bandgap MgIn₂O₄, 154, 476

Shear compliance

TaS₃, **155**, 105

Silicate

exchange with nitrate in hydrotalcite, effect of Mg:Al ratio, 151, 272 Silicon

Ba₃SiI₂, synthesis, structure, and properties, 152, 460

BaSm₄(SiO₄)₃Se, crystal structure, **155**, 433

borosilicates, crystallization and structural characteristics, 154, 312

B-Si thin film, preparation by pulsed laser deposition and properties, 154, 141

CaAl₁₂Si₄O₂₇ high-pressure phase with Al₆O₁₉ clusters, synthesis and structure, **153**, 391

Cs₈Na₁₆Si₁₃₆ clathrate, synthesis and characterization, 153, 92

Cu₄Nb₅Si₄, bonding analysis, 154, 384

 $K_{7.62(1)}Si_{46}$, synthesis and structure, 154, 626

 $La_3Al_{0.44}Si_{0.93}S_7$, crystal structure, **155**, 433

La₃BSi₂O₁₀, crystallization and structural characteristics, 154, 312

La₅Si₂BO₁₃, synthesis and neutron diffraction study, **155**, 389

Mg₂Si, Li insertion into, reaction mechanism, 153, 386

 $Rb_8Na_{16}Si_{136}$ clathrate, synthesis and characterization, 153, 92

Rb_{6.15(2)}Si₄₆, synthesis and structure, **154**, 626

SiO₂, lamellar silica synthesized by neutral amine route, structure and thermal stability, effect of addition of divalent transition metal chlorides, 149, 113

 $Ln_2(SiO_4)Te$ (Ln = Nd,Sm), monoclinic and orthorhombic crystals, structure, 155, 433

 SiP_2O_7 , comparison with $Na_2M_2(BO_3)_2O$ (M = Al,Ga), 154, 344

 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), synthesis, crystal structure, and physical properties, **152**, 540

TbB₄₁Si_{1.2}, specific heat, **154**, 223

YB₄₁Si_{1.2}, transport phenomena, 154, 229

Y₂Si₂O₇, phase transformations in gel- and mixed-powder-derived polymorphs, X-ray diffraction and ²⁹Si MAS NMR studies, **149**, 16

ZrSiO₄, pure and doped, hyperfine characterization, 150, 14

Silver

Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure of molecular and extended complexes, **152**, 247

Ag(I) in Na_{2-x}Ag_xZnP₂O₇, luminescence properties, **149**, 284

Ag₂NbTi₃P₆S₂₅, crystal structure, **153**, 55

 Ag_8SnE_6 (E = S,Se) chalcogenides, synthesis and characterization, 149, 338

Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, structures and magnetic properties, 152, 159

AgTi₂(PS₄)₃, crystal structure and ionic conductivity, 153, 55

incorporation into Ba₄Er₂Cu₇O_{15-δ}, structural effects, **150**, 228

 $Na_{2-x}Ag_xZnP_2O_7$, Ag(I) luminescence in, 149, 284

polymeric Ag(I)-hexamethylenetetramine complexes, structure and topological diversity, **152**, 211

RbSm₂Ag₃Se₅, synthesis and structure, 151, 317

 ${[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]}_n$, 151, 286

 $\{ [W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2] \}_n$, 151, 286

 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n$, 151, 286

Sintering

additive free hydrothermally derived indium tin oxide powders in air, 154, 444

 $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$ ceramics, effect of particle size, 155, 273 boron and boron carbide, 154, 194

Sodium

Ca₆Sm₂Na₂(PO₄)₆F₂, crystal structure and polarized Raman spectra, 149, 308

 $Cs_8Na_{16}Ge_{136}$ and $Cs_8Na_{16}Si_{136}$ clathrates, synthesis and characterization, 153, 92

hydrated sodium vanadium bronze, synthesis, 149, 443

K₂CaNaTa₃O₁₀ Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, 155, 46

Na_{2-x}Ag_xZnP₂O₇, Ag(I) luminescence in, **149**, 284

 $Na_2M_2(BO_3)_2O$ (M = Al,Ga), crystal structure, comparison with other layered oxyborates and SiP_2O_7 , **154**, 344

Na₃[B₆O₉(VO₄)], synthesis and crystal structure, **150**, 342

Na₄Co₃H₂(PO₄)₄·8H₂O, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292

Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122

Na₃In(PO₄)₂, polymorphous modifications, structure, **149**, 99

Na_{3.64}Mg_{2.18}(P₂O₇)₂, crystal structure, **152**, 323

Na_{3.64}Ni_{2.18}(P₂O₇)₂, crystal structure, **152**, 323

Na₂O-B₂O₃ glass system, phase separation in, NMR study, 149, 459

Na(O₂CC \equiv CH), structure and γ -ray-induced solid-state polymerization: effect of bilayer formation on solid-state reactivity, **152**, 99

Na_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158

Na_{1.5}Pb_{0.75}PSe₄ with cubic structure, flux synthesis and isostructural relationship to Na_{0.5}Pb_{1.75}GeS₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158

NaSb₃O₂(PO₄)₂, synthesis and structure, 151, 21

Na₂SO₄, conductivity enhancement, review and current developments, 155, 154

Na₂SO₄-Al₂O₃ composite electrolytes, ionic conductivity, mechanism and role of preparatory parameters, **153**, 287

 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, X-ray powder and electron diffraction study, **154**, 427

Na₂Ti₂Sb₂O, powder neutron diffraction: structure-property relationships, **153**, 275

Na₆(UO₂)₅(VO₄)₂O₅, synthesis and crystal structure, **155**, 342

 $Na_xW_{18}O_{49}$, sodium ordering in, 151, 220

Na₂ZnP₂O₇, crystal structure, **152**, 466

 $Rb_8Na_{16}Ge_{136}$ and $Rb_8Na_{16}Si_{136}$ clathrates, synthesis and characterization, 153, 92

Sr_{3.1}Na_{2.9}Bi₃O₁₂, synthesis and characterization, 152, 492

Sodium propynoate

structure and γ-ray-induced solid-state polymerization: effect of bilayer formation on solid-state reactivity, **152**, 99

Sol-gel synthesis

Ge-substituted SnO₂, 154, 579

 $NiCo_2O_4$ prepared by, XRD, XANES, EXAFS, and XPS study, 153, 74

 $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds, 151, 298

SiO₂, lamellar, by neutral amine route, effect of addition of divalent transition metal chlorides, 149, 113

Solid solutions

Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, **155**, 305

Bi_{1-y}La_yO_{1.5}, monoclinic, identification and structural relationship to rhombohedral Bi-Sr-O type, **151**, 281

 ${\rm Bi_{4-x}La_xTi_3O_{12}}$ (x=1,2) and ${\rm Bi_{2-x}Sr_{2+x}Ti_{1-x}Nb_{2+x}O_{12}}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

 In_2O_3 – M_2O_3 (M=Y,Sc) doped with Sn, electrical, optical, and structural properties, **153**, 41

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, 155, 280

metastable hexagonal vanadium molybdate, properties and limits, 152,

MO-M'O, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357

 $Ni_v Mo_6 Se_{8-x} S_x$, single crystal structural study, **155**, 250

nonideal, thermodynamic properties, evaluation by molecular dynamics method, **153**, 118

rutile TiO₂, redox properties of VIB transition metal ions in, XRD and EPR study, **152**, 412

series between β -Fe₂(PO₄)O and Fe₄(PO₄)₃(OH)₃, synthesis and phase characterization, **153**, 237

 M_{1-x} Sm_xSO₄ (M=Ba,Sr), Sm²⁺ crystal chemistry and stability in, **154**, 535

 $Ln_{1-x}Ln'_x \text{TiO}_3$ (*Ln* and Ln' = La-Sm; $0 \le x \le 1$), magnetic properties, **153**, 145

(Y,RE)Al₃(BO₃)₄ (RE = Nd,Gd,Ho,Yb,Lu), crystal growth and characterization, **154**, 317

Solvent equation of state

near critical point for electron transfer reactions, spin-exchange term in, 151, 102

Solvothermal synthesis

 Ag_8SnE_6 (E = S,Se) chalcogenides, **149**, 338

Co_{0.844}Se nanocrystals in nonaqueous solvent, **152**, 537

Cu₂SnS₃ nanocrystals, **153**, 170

metal phosphides (metal = Co,Ni,Cu), 149, 88

γ-NiSb nanocrystals at low temperature, 155, 42

pillared 3D Mn(II) coordination network with rectangular channels, 152, 152

 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, **149**, 107

Sonochemistry

synthesis of HgS and PbS nanoparticles, 153, 342

Space group symmetry

in design of functional crystals, 152, 191

Specific heat

B₁₂P₂ wafers, **154**, 33

 $Nd_{1-x}TiO_3$ perovskites, 155, 177

rare-earth hexaborides, 154, 275

 $R_2 Ru_2 O_7$ (R = rare earths) pyrochlores, **152**, 441

 $Sm_{1-x}TiO_3$ perovskites, **155**, 177

TbB₄₁Si_{1.2}, **154**, 223

Spin crossover

in Fe(II)-1,10-phenanthroline complexes, anomalies associated with mechanical strain, role of NCS⁻ and PF₆⁻ counterions, **153**, 82

Spin dimer analysis

spin exchange interactions of AV_4O_9 ($A = Ca,Sr,Cs_2,NH_2(CH_2)_4NH_2$), 153, 263

Spinels

CdCr₂S₄ and CdCr₂Se₄, electronic band structure, 155, 198

 $(Cd_{1-x}Mn_x)Mn_2O_4$, synthesis, stoichiometry, and electrical transport properties, **153**, 231

Co-Cu-Mg-Zn-Cr mixed oxides, synthesis and properties, **152**, 526 Li-Mn-Fe-O, Li ion distribution in, computer modeling, **153**, 310 LiMn₂O₄-based

Ni-stabilized, electrochemical insertion properties of, effects of partial acid delithiation, **150**, 196

origin of 3.3 V and 4.5 V steps, TEM studies of, 155, 394

LiTi₂O₄, change to ramsdellite, Li site occupancy in, NMR study, **152**, 397

Spin exchange

in extended magnetic solids $KCuF_3$, K_2CuF_4 , $KNiF_3$, K_2NiF_4 , La_2CuO_4 , and Nd_2CuO_4 , 151, 96

spin-exchange term in solvent equation of state near critical point for electron transfer reactions, **151**, 102

 AV_4O_9 ($A=Ca,Sr,Cs_2,NH_2(CH_2)_4NH_2$), spin dimer analysis, 153, 263

Spin-glass behavior

 $SmNi_{1-x}Co_xO_3$, **150**, 145

Split atom model

LuFeO₃(ZnO)_m, 150, 96

Spray pyrolysis

magnetic iron oxide/mullite nanocomposite preparation, **155**, 458 Sputtered neutral mass spectrometry

cation loss from BaCa_{0.393}Nb_{0.606}O_{2.91} in aqueous media leading to amorphization at room temperature, **149**, 262

Stacking fault

 KMQ_2 (M = Al,Ga; Q = Se,Te) chalcogenides with, synthesis and structure, **149**, 242

Stacking interactions

aryl, structural mimicry by polymorphous one-dimensional tetrapyridylporphyrin coordination polymers, **152**, 253

in ladder-like Cu(II) coordination polymers, 152, 183

Strontium

AlSr₂YCu₂O₇, crystal growth and structure, 149, 256

Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, 155, 305

1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi–Sr ordering, synthesis and characterization, **151**, 210

 $Bi_{2-x}Sr_{2+x}Ti_{1-x}Nb_{2+x}O_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

 ${\rm Ce_{1-x}SrVO_{4-0.5x}}$ with zircon-type structure, preparation by solid-state reaction in air, 153, 174

in chlorapatite, effects on topotaxial replacement by hydroxyapatite under hydrothermal conditions, **154**, 569

 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies. **150.** 188

(Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z, 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488

K₂SrLaTi₂TaO₁₀ · 2H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, 155, 46

 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, structural characterization, 155,

 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, synthesis and crystal structure, **149**, 189

 $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_{3-\delta}\square_{\delta}$ (0 \leq δ \leq 0.15), physical properties, effects of oxygen nonstoichiometry, **151**, 139

 $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, synthesis and characterization, **153**, 34

 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, X-ray powder and electron diffraction study, **154**, 427

 $Pr_{1-x}Sr_xFeO_{3-\delta}$, structure and magnetism, **150**, 233

 $\text{Sm}_{1/3}\text{Sr}_{2/3}\text{FeO}_3^{}$, charge ordering and magnetotransport transitions, 153, 140

SrAl₂B₂O₇, **150**, 404

Sr_{1.25}Bi_{0.75}O₃, structure determination as function of temperature from synchrotron X-ray powder diffraction data, 150, 316

SrC₂, synthesis and crystal structure, 151, 111

Sr₂CrMoO₆ double perovskite, magnetoresistance, 155, 233

Sr_{4.5}Cr_{2.5}O₉, magnetic properties, **154**, 375

 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}Q_2$ (Q=S,Se), synthesis and structure, **153**, 26

 $Ln_{1.85}^{3.85}Sr_{0.15}^{2+}CuO_4$ superconductors, true tolerance factor effects in, 155,

Sr₂FeNbO₆ perovskites, magnetic susceptibility and Mössbauer spectroscopy, **154**, 591

Sr₂Fe₂O₅, structural phase transition under high pressure, **155**, 381

 $Sr_nFe_nO_{3n-1}$ ($n=2,4,8,\infty$) perovskites, oxygen-vacancy-ordered crystal structure, evolution and relationship to electronic and magnetic properties, **151**, 190

 $Sr_4Fe_2O_6CO_3$, synthesis, crystal structure, and magnetic order, **152**, 374 $SrGa_2B_2O_7$, crystal structures, **154**, 598

 β -SrGa₂O₄ and ABW-type γ -SrGa₂O₄, framework structures, **153**, 294 γ -SrHPO₄, synthesis and crystal structure, **152**, 428

Sr_{0.4}K_{0.6}BiO₃, structure determination as function of temperature from synchrotron X-ray powder diffraction data, 150, 316

Sr_{3,75}K_{1,75}Bi₃O₁₂, synthesis and characterization, **152**, 492

Sr_{1-3x/2}La_xTiO₃, A-site cation-vacancy ordering in, HRTEM study, 149, 360

 $SrMn_{1-y}(B,C)_yO_{3-\delta}$, order-disorder phenomena, 149, 226

 $Sr_4Mn_{3-x}Fe_xO_{10} - \frac{\delta}{\delta}$ (x = 1,1.5,2), Ruddlesden–Popper phases, properties. **155.** 96

Sr_{3.1}Na_{2.9}Bi₃O₁₂, synthesis and characterization, **152**, 492

Sr₂NiN₂, synthesis, crystal structure, and physical properties, 154, 542

Sr(OH)Br, hydroxide ion disorder in, 151, 267

SrO-Ho₂O₃-CuO_x system, phase relations, **149**, 333

 M^{3+} Sr₄(PO₄)₃O (M^{3+} = Bi,La), synthesis and characterization, 149, 133

Sr₁₁Re₄O₂₄ double oxide, preparation, structure, and magnetic studies, **149**, 49

Sr₃Ru₂O₇, structural distortions, neutron diffraction study, **154**, 361

 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), synthesis, crystal structure, and physical properties, **152**, 540

 $Sr_{1-x}Sm_xSO_4$, Sm^{2+} crystal chemistry and stability in, **154**, 535 $Sr_2Sn(OH)_8$, hydrothermal synthesis and structure, **151**, 56 SrV_4O_9

in metastable state, synthesis and crystal structure, **149**, 414 spin exchange interactions of, spin dimer analysis, **153**, 263

Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, **153**, 106

Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y, superstructure derived from, X-ray and neutronpowder diffraction, 155, 22

 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La, Pr, Nd, Sm, Eu, Gd), synthesis and structure, **150**. 1

Structure, see also Band structure; Crystal structure; Electronic structure; Superstructure; Tunnel structure

aluminum phosphate oxalate hybrid open framework with large circular 12-membered channels, **150**, 324

BaGa₂O₄, stuffed framework structure, 154, 612

 $R_5B_2C_5$ (R = Y,Ce-Tm), **154**, 286

Bi_{0.775}La_{0.225}O_{1.5} of rhombohedral Bi-Sr-O type with polycationic substitutions for La, **149**, 341

Bi_{1-y}La_yO_{1.5} monoclinic solid solution, relationship to rhombohedral Bi-Sr-O type, **151**, 281

 $Bi_{4-x}La_xTi_3O_{12}$ (x = 1,2): cation disorder in three-layer Aurivillius phases, **153**, 66

Bi₂Pb₂O₇, 149, 314

 $Bi_{2-x}Sr_{2+x}Ti_{1-x}Nb_{2+x}O_{12}$ (0 < x < 0.8): cation disorder in three-layer Aurivillius phases, **153**, 66

BN nanotubes, 154, 214

boron carbide enriched in ¹⁰B, ¹¹B, and ¹³C isotopes, **154**, 79

 $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), 152, 474

CeO₂ nanoncrystals, X-ray absorption spectroscopic study, 149, 408

Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, 152, 526

 Dy_6MTe_2 (M = Fe,Co,Ni), 155, 9

Fe(H₂NCH₂CH₂NH₂)MoO₄, **152**, 229

 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157

framework, β -SrGa₂O₄ and ABW-type γ -SrGa₂O₄, **153**, 294

 $Ga_2S_3(As_2S_3,PbS) - GeS_2 - MnS \ glasses, \ local \ structure, \ \textbf{152}, \ \textbf{388}$

Gd₂O₃-B₂O₃, **154**, 204

 $(H_3NCH_2CH_2NH_3)[Fe(C_2O_4)MoO_4], 152, 229$

icosahedral boron-rich solids, defects, correlation with electronic properties, **154**, 61

 $In_2O_3-M_2O_3$ (M=Y,Sc) solid solutions doped with Sn, 153, 41

intermediate cubic phase crystallized from Synroc alkoxide precursor at $800\ ^{\circ}\text{C},\ 150,\ 209$

K_{7.62(1)}Si₄₆, 154, 626

La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, 152, 503

 $\text{La}_{n+1}\text{Ni}_n\text{O}_{3n+1}$ (n=1,2,3), relationships among phases, neutron diffraction study, **152**, 517

Li_{2+x}Ti₃O₇ obtained electrochemically, **153**, 132

metal borides, molecular models of, 154, 110

Mo₂NiB₂ boride base cements with Cr and V additions, effects of Mo/B atomic ratio, **154**, 263

Na_{2-x}Ag_xZnP₂O₇, relationship to Ag(I) luminescence, **149**, 284

Na₂Ti₂Sb₂O, relationship to properties, powder neutron diffraction study, **153**, 275

NiCo2O4, XRD, XANES, EXAFS, and XPS study, 153, 74

NiTa₂Se₇, incommensurately modulated at low temperature, independent \vec{q} and $2\vec{q}$ distortions in, **153**, 152

one-dimensional uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, **154**, 635

PbBi₆O₄(PO₄)₄, **154**, 435

rare-earth oxide pyrochlores, determination by wide-angle CBED, comparison with atomistic computer simulation, **153**, 16

Rb_{6.15(2)}Si₄₆, **154**, 626

Ru pyrochlores undergoing metal-nonmetal transition, 151, 25

SiO₂, lamellar silica synthesized by neutral amine route, effect of addition of divalent transition metal chlorides, 149, 113

 $Sm_{0.2}Ca_{0.8}MnO_3$ doped with Ru, correlation of micronanostructure with magnetic transitions, 155, 15

sodium propynoate, 152, 99

 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_7$ $_5Q_2$ (Q = S,Se), 153, 26

α-Ti(HPO₄)₂·H₂O with intercalated heterocyclic amines, 154, 557

vanadyl phosphate intercalated with acetone, 150, 356

 $YBa_2Cu_4O_8$ superconductor, HRTEM surface profile imaging, **149**, 327 $YMn_2D_{1.15}$, **154**, 398

[Zn-Al-Cl] layered double hydroxide after thermal treatment, 152, 568

ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, **155**, 312

Sulfur

Ag₂NbTi₃P₆S₂₅, crystal structure, **153**, 55

Ag₈SnS₆ chalcogenides, synthesis and characterization, **149**, 338

AgTi₂(PS₄)₃, crystal structure and ionic conductivity, **153**, 55

alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271

 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), synthesis and structure, **149**, 384 $BaMnS_2$, magnetic properties, **155**, 305

BaLn₂MnS₅, crystal structures and magnetic properties, 153, 330

 $Ba_{1-x}Sm_xSO_4$, Sm^{2+} crystal chemistry and stability in, 154, 535

Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, 155, 305

 $A_3 \text{Bi}_5 \text{Cu}_2 \text{S}_{10}$ (A = Rb, Cs), structure and conductivity, 155, 243

CdCr₂S₄ spinels, electronic band structure, 155, 198

 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, hydrothermal synthesis and crystal structure, **155**, 409

Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143

coordination polymers with 4,4'-dipyridyldisulfide, synthesis and structure, **152**, 113

Cs₂CuP₃S₉, chiral compound with chiral screw helices, preparation, structure, and characterization, 151, 326

Cu₂FeSn₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363

Cu₂FeTi₃S₈, local environment in, X-ray absorption spectra as fingerprint of, **150**, 363

Cu₂Gd_{2/3}S₂, crystal structure: interlayer short-range order of Gd vacancies, **152**, 332

Cu₂SnS₃ nanocrystals, synthesis, characterization, and properties, 153, 170

FePS₃, layered compound, intercalation reaction with 1,10-phenanthroline, **150**, 258

 $Ga_2S_3(As_2S_3,PbS)$ – GeS_2 –MnS glasses, magnetic susceptibility and local structure, **152**, 388

HgS nanoparticles, sonochemical synthesis, 153, 342

Hg₃S₂I₂, synthesis and crystal structure, **151**, 73

(In_{0.5}□_{0.5})[In_{1.5}Sn_{0.5}]S₄, vacant thiospinel, reversible lithiation, pressure-sensitive modeling, **152**, 533

KBi₂CuS₄, structure and conductivity, 155, 243

 $K_{1.8}Mo_9S_{11}$, band structure, **155**, 124

La₃Al_{0.44}Si_{0.93}S₇, crystal structure, **155**, 433

La₅Cu₆O₄S₇, synthesis, structure, electrical conductivity, and band structure, 155, 366

La_{~10.8}Nb₅O₂₀S₁₀, synthesis and structure, **152**, 348

Li_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Na_{0.5}Pb_{1.75}GeS₄, **153**, 158

Li₂S, reversible antifluorite to anticotunnite phase transition at high pressures, 154, 603

mesostructured 3D materials based on [Ge₄S₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

 $MgIn_2S_4$ microcrystals on wide bandgap $MgIn_2O_4$, semiconductor sensitization by, 154, 476

MnPS₃, intercalation compound with 1,10-phenanthroline, synthesis, characterization, and magnetic properties, **150**, 281

 $A_2Mo_9S_{11}$ (A = K,Nb), band structure, **155**, 124

 $[Mo_2S_2O_2]^{2+}$ molecular building block, preparation and self-condensation, 152, 78

Na_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158

Na₂SO₄, conductivity enhancement, review and current developments, **155**, 154

Na₂SO₄-Al₂O₃ composite electrolytes, ionic conductivity, mechanism and role of preparatory parameters, **153**, 287

NCS⁻ counterion, role in anomalous spin crossover of mechanically strained Fe(II)-1,10-phenanthroline complexes, **153**, 82

Nd₁₆Ti₅S₁₇O₁₇, synthesis and structure, 152, 554

 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural study, 155, 250

 $(Pb(Mn,Nb)_{0.5}S_{1.5})_{1.15}$ NbS_2 , interlayer charge transfer quantitation via bond valence calculation, **155**, 1

PbS nanoparticles, sonochemical synthesis, 153, 342

[(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370

 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153**, 195

 $(Pr_4N)_2M(H_2O)_5[Re_6S_8(CN)_6] \cdot H_2O$ (M = Mn,Ni), synthesis and structure, **153**, 195

Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), synthesis and structure, X-ray single crystal and neutron powder diffraction studies, 149, 9

 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n=1 to 4), superconducting cluster compounds, synthesis, structure, and theoretical studies, **155**, 417

 $Rb_2Sb_8S_{13}\cdot 3.3H_2O,$ hydrothermal synthesis and crystal structure, 155, 409

SmSO₄, Sm²⁺ crystal chemistry and stability in, **154**, 535

SnS₂ single crystals, diamine intercalation compounds of, synthesis and characterization, **150**, 391

Sn-Zn-S system, mechanochemical reactions in, 153, 371

 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}S_2$, synthesis and structure, 153, 26

 $Sr_{1-x}Sm_xSO_4$, Sm^{2+} crystal chemistry and stability in, **154**, 535 TaS₃, interactions of sliding charge-density waves with phonons, **155**,

TiS₂, intercalation of methylamines into, 155, 326

U₃S₅, uranium valency in, 150, 336

{V₁₈O₄₂(SO₄)}, extended solids composed of, synthesis, structure, and physicochemical properties, **152**, 105

 $\{[W_4Ag_6S_{16}]\cdot [Ca(DEAC)_6]\}_n$, 151, 286

 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n$, 151, 286

 $\{[W_2Ag_2S_8]\cdot[Zn(4,4'-bipy)_2(DMSO)4]\cdot(DMSO)\}_n$, 151, 286 Sulfurization

 $MgIn_2O_4$ to form $MgIn_2S_4$, **154**, 476

Superconductivity

borocarbides Ln-M-B-C (Ln = rare earths, Y; M = Ni,Pd), **154**, 114 Superconductors

2212-type, in Tl-Hg-Ba-Sr-Ca-Cu-O system, XRD studies, **153**, 106 $Ln_{1.85}^{3+}M_{0.15}^{0+}$ CuO₄, true tolerance factor effects in, **155**, 138

 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies, **150**, 188

 $(Hg,M)Sr_2(Ln,Ce)_2Cu_2O_z$, 1222-type, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

LiTi₂O₄, and related compounds, Li site occupancy in, NMR study, **152**,

 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n=1 to 4), cluster compounds, synthesis, structure, and theoretical studies, **155**, 417

Sr_{1.25}Bi_{0.75}O₃ and Sr_{0.4}K_{0.6}BiO₃, structure determination as function of temperature from synchrotron X-ray powder diffraction data, **150.** 316

YBa₂Cu₄O₈, HRTEM surface profile imaging, 149, 327

Superparamagnetism

manganites, 155, 116

Superstructure

Bi₂Nd₄O₉ monoclinic phase, 153, 30

H_xMoO₃ bronzes, CDW superstructures, **149**, 75

 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, **154**, 427

Nb₇W₁₀O₄₇ tetragonal bronze-type phase, **149**, 428

LnPdGe (Ln = La-Nd,Sm,Gd,Tb), 154, 329

Sr₂NiN₂, 154, 542

Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y-derived, X-ray and neutron-powder diffraction, 155, 22

Supramolecular interactions

polymeric Ag(I)-hexamethylenetetramine complexes, 152, 211

Supramolecular isomerism

polymorphous one-dimensional tetrapyridylporphyrin coordination polymers, **152**, 253

Supramolecular materials

organic, polarity, 152, 49

Surfaces

 $YBa_2Cu_4O_8$ superconductor, profile imaging by HRTEM, **149**, 327 Symmetry-breaking transitions

from GdCuAs₂ through GdCuAs_{1.15}P_{0.85} to GdCuP_{2.20}, **155**, 259 Synchrotron X-ray powder diffraction

 $Sr_{1.25}Bi_{0.75}O_3$ and $Sr_{0.4}K_{0.6}BiO_3$, structure determination as function of temperature, **150**, 316

SrC₂, **151**, 111

Synroc

alkoxide precursor heated to 800 °C, intermediate cubic phase crystallized from, fluorite structure, **150**, 209

Synthesis, see also Hydrothermal synthesis; Solvothermal synthesis

Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, molecular and extended complexes, **152**, 247

Ag₂NbTi₃P₆S₂₅ with interlocked structure, 153, 55

AgTi₂(PS₄)₃ with interlocked structures, 153, 55

apatite-related phosphates, 149, 133

 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), **149**, 384

Ba₈Co₇O₂₁, **151**, 77

 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with p-type thermoelectric cage structure, **151**, 61

Ba₂₄Ge₁₀₀, **151**, 117

 $BaHf_{1-x}Zr_x(PO_4)_2$ emitting ultraviolet under X-ray excitation, **155**, 229 $Ba_4Nd_2Cd_3Se_{10}$, **149**, 384

Ba₃SiI₂, **152**, 460

1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi-Sr ordering, **151**, 210

BN nanotubes, 154, 214

CaAl₁₂Si₄O₂₇ phase with Al₆O₁₉ clusters at high pressure, **153**, 391

 $Ca_{3.1}Cu_{0.9}RuO_6$, 153, 254 $CaErPt_3Sn_5$ and $CaLuPt_3Sn_5$ with $Yb_2Pt_3Sn_5$ -type structure, 150, 112

CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, **154**, 483 in Ca₂Ta₂O₇-Sm₂Ti₂O₇ system, **150**, 167

CaTmPt₃Sn₅ and CaYbPt₃Sn₅ with Yb₂Pt₃Sn₅-type structure, **150**, 112 $(Cd_{1-x}Mn_x)Mn_2O_4$, **153**, 231

Cd(OH)Cl, 151, 308

CdSe cubic nanocrystals at room temperature in aqueous solution, 151, 241

Ce₂Ni₂Cd, 150, 139

(R,S)-(C₅H₁₄N₂)Co(HPO₄)₂ one-dimensional cobalt phosphate, **153**, 180

clathrates of group 14 with alkali metals, synthesis and characterization, 153, 92

[Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, **152**, 280

Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, 152, 526

coordination polymers with 4,4'-dipyridyldisulfide, 152, 113

 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, 154, 45

Cs₇Au₅O₂, **155**, 29

Cs₅Hg₁₉, **149**, 419

Cs₃Mg₂P₆O₁₇N, **153**, 185

Cu(I)-Cu(II) coordination polymers of two or three dimensions, 152, 174

 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, **150**, 159

CuInO₂ delafossite-type oxide, 151, 16

Cu(OH)Cl, 151, 308

diamine intercalation compounds of SnS₂ single crystals, 150, 391

 Dy_6MTe_2 (M = Fe,Co,Ni), **155**, 9

Eu₁₆Bi₁₁, **155**, 168

Eu₁₆Sb₁₁, **155**, 168

EuSn₃Sb₄ and related Zintl phases, 150, 371

extended solids composed of transition metal oxide clusters, 152, 105 FeZn₁₀ and Fe₁₃Zn₃₉, **151**, 85 functionalized MCM-41 with Cu- and Mn-phenanthroline complexes, 152, 447 $GdNi_3X_2$ (X = Al,Ga,Sn), conditions for, relationship to structural, electrical, magnetic, and hydrogen absorption properties, 150, 62 A_3 Hg₂₀ (A =Rb,Cs) and A_7 Hg₃₁ (A =K,Rb), **149**, 419 Hg₆As₄BiCl₇ built of polycationic mercury-pnictide framework with trapped anions, 154, 350 HgS nanoparticles, 153, 342 Hg₆Sb₄BiBr₇ and Hg₆Sb₅Br₇, built of polycationic mercury-pnictide framework with trapped anions, 154, 350 $Hg_3Se_2I_2$ and $Hg_3S_2I_2$, **151**, 73 (Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, **154**, 488 hydrated lithium and sodium vanadium bronzes, 149, 443 intercalates of vanadyl and niobyl phosphates with C₄ diols, 151, 225 intercalation compound of 1,10-phenanthroline with layered MnPS₃, 150, 281 KMQ_2 (M = Al,Ga; Q = Se,Te) chalcogenides with stacking faults, 149, 242 K₃Hg₁₁, **149**, 419 K_{7.62(1)}Si₄₆, **154**, 626 La_{0.7}Ca_{0.3}MnO_z ultrafine powders by mechanical alloying, **152**, 503 La₅Cu₆O₄S₇, **155**, 366 $La_{\sim 10.8}Nb_5O_{20}S_{10}$, 152, 348 La₅Re₃MnO₁₆, **151**, 31 La₅Si₂BO₁₃, 155, 389 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, **149**, 189 $La_{1,2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1,2}Sr_{0.8}MnO_{4+\delta}$, 153, Li_{0.5}Pb_{1.75}GeS₄ with cubic structure by flux synthesis, 153, 158 β -LiVOAsO₄, **150**, 250 Mn₃Ga₅ pseudo-decagonal approximant, 153, 398 Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D incommensurate modulation, 152, 573 from molecular building blocks, 152, 1 $RE_5Mo_{32}O_{54}$ (RE = La,Ce,Pr,Nd) with trans-capped Mo_8 octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, 152, 403 $Na_3[B_6O_9(VO_4)]$, 150, 342 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, **151**, 122 Na_{0.5}Pb_{1.75}GeS₄ with cubic structure by flux synthesis, 153, 158 Na_{1.5}Pb_{0.75}PSe₄ with cubic structure by flux synthesis, 153, 158 NaSb₃O₂(PO₄)₂, 151, 21 $Nb_2N_{0.88}O_{0.12}$, 150, 36 Nd₁₆Ti₅S₁₇O₁₇, **152**, 554 [NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, racemic isopropanolamine as solvent and template for, 151, 145 $R_2 \text{NiB}_{10}$ (R = Y,Ce-Nd,Sm,Gd-Ho), **154**, 246 NiCo₂O₄, 153, 74 $LnNiIn_2$ (Ln = Pr,Nd,Sm), **152**, 560 $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds, preparation via different precursors, 151, 298 $\alpha - \text{Ni}(VO_3)_2 \cdot 2H_2O$ and $\text{Ni}(VO_3)_2 \cdot 4H_2O$, 152, 511 $PbBi_6O_4(XO_4)_4$ (X = P,V,As), **154**, 435 Pb₇F₁₂Cl₂: disordered modification, **149**, 56 PbS nanoparticles, 153, 342 $(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se; M = Mn,Ni), 153, $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), 153, 195 PrRhIn, 152, 560 Rb₅Au₃O₂ and Rb₇Au₅O₂, **155**, 29 $RbLn_2CuSe_4$ (Ln = Sm,Gd,Dy), **151**, 317 $Rb_{1.5}Ln_2Cu_{2.5}Se_5$ (*Ln* = Gd,Dy), **151**, 317 (Cr_{1-x}Ni_x)₃Te₄ with pseudo-NiAs-type structure, magnetic properties, Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), 149, 9

 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n = 1 to 4) superconducting cluster compounds, 155, 417 Rb_{6.15(2)}Si₄₆, 154, 626 RbSm₂Ag₃Se₅, **151**, 317 Ruddlesden-Popper tantalates and titanotantalates, 155, 46 Sb₅PO₁₀, **155**, 451 SrC₂, 151, 111 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}Q_2$ (Q = S,Se), 153, 26 Sr₄Fe₂O₆CO₃, **152**, 374 $Sr_{3.75}K_{1.75}Bi_3O_{12}$, **152**, 492 Sr_{3.1}Na_{2.9}Bi₃O₁₂, **152**, 492 Sr₂NiN₂, **154**, 542 $Sr_{11}Re_4O_{24}$ double oxide, **149**, 49 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), **152**, 540 Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and polyphenolic 2D motifs, 152, 130 TiB₂, electrochemical synthesis, 154, 107 $Ln_{2/3}\text{TiO}_3$ (Ln = Pr,Nd), **149**, 354 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr,Nd,Sm,Eu,Gd), 150, 1 UFe₅Sn, 154, 551 $(UO_2)_3(VO_4)_2 \cdot 5H_2O$, **150**, 72 $M_6(UO_2)_5(VO_4)_2O_5$ (M = Na,K), 155, 342 (VO)₂P₂O₇ at 3 GPa, **153**, 124 $Ln_7VO_4Se_8$ (Ln = Nd,Sm,Gd), **154**, 564 $\{[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]\}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n$, 151, 286 W carbides by temperature programmed reaction with CH₄-H₂ mixtures, 154, 412 $W_2O_3 \cdot P_2O_7$ with empty tunnel structure, 155, 112 Yb₅In₂Sb₆ Zintl phase with narrow band gap, **155**, 55 YMn₂D₂ single phase, in situ neutron diffraction study, **150**, 183 discrete molybdenum oxide-based building blocks as, in control of growth of solid-state materials, 152, 57 Т Tantalum Ba₂LuTaO₆, Yb³⁺ doped in, EPR study, **150**, 31 Ba₂YbTaO₆ with ordered perovskite structure, magnetic susceptibility, **150,** 31 Ca₂Ta₂O₇-Sm₂Ti₂O₇ system, syntheses in, structures, and crystal chemistry, 150, 167 $(Cr_{1-x}Ta_x)_3B_4$ large crystals, synthesis and analysis, 154, 45 Ge-Ta-Zr system, M₅Ge₄ compounds in, structure-composition relations and fractional site occupancy, 150, 347 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, X-ray powder and electron diffraction study, 154, 427 NiTa₂Se₇, with incommensurately modulated low-temperature structure, independent \vec{a} and $2\vec{a}$ distortions in, 153, 152 Ruddlesden-Popper phase tantalates and titanotantalates, synthesis, proton exchange, and topochemical dehydration, 155, 46 TaB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 TaCl₆ and TaOCl₃, compound with intercalated graphite, structural analysis with molecular simulations, 149, 68 TaS₃, interactions of sliding charge-density waves with phonons, 155, 105 Tautomerism vanadyl phosphate intercalated with acetone, 150, 356 Tellurium Bi_2TeO_5 , $Bi_2Te_2O_7$, and α - and β - $Bi_2Te_4O_{11}$, IR spectra, 152, 392

154, 356

 Cu_{2-x} Te, preparation by microwave heating, 154, 530 LiH₅TeO₆, 150, 410 Dy_6MTe_2 (M = Fe,Co,Ni), synthesis, structure, and bonding, 155, 9 $Nd_4Co_3O_{10+\delta}$ and $Nd_4Ni_3O_{10-\delta}$, **151**, 46 HgTe, preparation by microwave heating, 154, 530 Ni effects on calcium phosphate formation, 151, 163 $KMTe_2$ (M = Al,Ga) chalcogenides with stacking faults, synthesis and $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via difstructure, 149, 242 ferent precursors, 151, 298 LaTe₂, crystal and electronic band structure, **149**, 155 piperazinium(2+) selenate monohydrate, 150, 305 $Rb_2[B_4O_5(OH)_4] \cdot 3.6H_2O$, **149**, 197 LiH₅TeO₆, preparation, crystal structure, vibrational spectra, and ther-[Zn-Al-Cl] layered double hydroxide, 152, 568 mal behavior, **150**, 410 $Ln_2(SiO_4)$ Te (Ln = Nd,Sm), monoclinic and orthorhombic crystals, Thermal conductivity structure, 155, 433 Ba_6Ge_{25-x} , $Ba_6Ge_{23}Sn_2$, and $Ba_6Ge_{22}In_3$, 153, 321 Ti₅Te₄, compounds structurally related to, bonding and electron count- β -rhombohedral boron modified isotopically, **154**, 296 ing in, theoretical study, 154, 384 Yb₅In₂Sb₆ Zintl phase with narrow band gap, **155**, 55 TlTe, phase transition: crystal structure, 149, 123 Thermal decomposition carbonates, NiCo2O4 prepared by, XRD, XANES, EXAFS, and XPS Temperature effects $Sr_{1.25}Bi_{0.75}O_3$ and $Sr_{0.4}K_{0.6}BiO_3$ structures, synchrotron X-ray powder study, 153, 74 diffraction study, 150, 316 intercalation compounds of anionic oxalato complexes with layered TIF crystal structure, 150, 266 double hydroxides, 153, 301 Temperature-programmed reaction $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O (M = K,NH_4), 150, 81$ with CH₄-H₂ mixtures, in synthesis of tungsten carbides, 154, 412 polyoxotungstates, in preparation of tungsten bronzes, 149, 378 seven-coordinated diaquasuccinatocadmium(II) bidimensional polymer, Terbium Ba₄Tb₂Cd₃S₁₀, synthesis and structure, 149, 384 153, 1 $(ZrO_2)_{0.8}$ - $(\alpha$ -Fe₂O₃)_{0.2} powder for gas sensing applications, 155, 320 fluorite-type oxides containing, lattice oxygen transfer in, 155, 129 Tb_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bond-Thermal expansion $(La_{1-x}Ca_x)CrO_3$, **149**, 320 ing, 152, 478 TbB_6 negative, in $Y_2(WO_4)_3$, **149**, 92 interband transitions, IR-active phonons, and plasma vibrations, 154, Thermal stability Bi₂Pb₂O₇ with pyrochlore structure, **149**, 314 magnetic entropy, 154, 275 CaRh₂O₄, 150, 213 TbB₄₁Si_{1,2}, specific heat, **154**, 223 $(Cd_{1-x}Mn_x)Mn_2O_4$, 153, 231 TbCo₄B, magnetic properties, 154, 242 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, **155**, 280 Tb₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical propmetastable hexagonal vanadium molybdate solid solutions, 152, 353 erties, 154, 246 SiO₂, lamellar silica synthesized by neutral amine route, effect of addi-TbPdGe, order of Pd and Ge atoms in, 154, 329 tion of divalent transition metal chlorides, 149, 113 $(UO_2)_3(VO_4)_2 \cdot 5H_2O$, **150**, 72 7,7,8,8-Tetracyanoquinodimethanide Ag(TCNQ) crystalline polymers, structures and magnetic properties, Thermal treatment **152,** 159 effect on synthesis of single-phase YMnD2, in situ neutron diffraction 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethanide study, 150, 183 Ag(TCNQF₄) crystalline polymers, structures and magnetic properties, Thermodynamics carbon tetrachloride-neopentane system, 154, 390 **152**, 159 chemical vapor deposition of borides, 154, 157 Tetrapyridylporphyrin polymorphous one-dimensional coordination polymers structurally Hf-B-C system: phase equilibria, 154, 257 mimicking aryl stacking interactions, 152, 253 metallic powder and alloy preparation in polyol media, 154, 405 nonideal solid solutions, evaluation by molecular dynamics method, 153, Thallium $TlCo_{2-x}Cu_xSe_2$ (x ~ 1) system, incommensurate Cu/Co ordering in, 118 151, 260 Thermoelectric power boron and boron phosphide films, 154, 26 TIF, crystal structures, 150, 266 Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD boron thin film, 154, 153 studies, 153, 106 $B_{12}P_2$ wafers, **154**, 33 Tl₂Nb₂O_{6+x} phases with pyrochlore structure, structure and properties, $Nd_{1-x}TiO_3$ perovskites, 155, 177 **155**, 225 $Sm_{1-x}TiO_3$ perovskites, 155, 177 Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y, superstructure derived from, X-ray and neutron-Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55 powder diffraction, 155, 22 Thermoelectric properties $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr,Nd,Sm,Eu,Gd), synthesis and structure, Ba_6Ge_{25-x} , $Ba_6Ge_{23}Sn_2$, and $Ba_6Ge_{22}In_3$, 153, 321 boron and boron phosphide films, 154, 26 TITe, phase transition: crystal structure, 149, 123 clathrates, 149, 455 TlZn(PO₃)₃, structure and luminescence, 154, 584 In₄Sn₃O₁₂ substituted with Y and Ti, 153, 349 Thermal analysis isoelectronically substituted (ZnO)₅In₂O₃, 150, 221 anion-exchanged Mg-Al hydrotalcites, effects of guest-host interactions, Mg-Fe-O system, 149, 33 155, 332 β -rhombohedral boron doped with metal, **154**, 13 B₁₂P₂ wafers, **154**, 33 Thermogravimetry Cs₂CuP₃S₉, chiral compound with chiral screw helices, 151, 326 Pr₂O₃ redox reaction in ZnO sintered ceramics, 149, 349 N,N'-dimethylpiperazinium(2+) selenate dihydrate, 150, 305 Pr₂O₃-Co-Co₂O₃ system at 1100 and 1150°C, **151**, 12 GaPO₄ structural phase transformations, 149, 180 Thermopower Gd₂O₃-B₂O₃, 154, 204 UNi_{1.9}Sn single crystals, 149, 120

Thin films

boron, preparation and thermoelectric power, **154**, 153

boron-silicon, preparation by pulsed laser deposition and properties, 154, 141

Thiospinels

 $(In_{0.5}\square_{0.5})[In_{1.5}Sn_{0.5}]S_4$, reversible lithiation, pressure-sensitive modeling, **152**, 533

Thorium

Th_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates. **149**, 378

Thulium

 $CaTmPt_3Sn_5$, synthesis, $Yb_2Pt_3Sn_5$ -type structure, and magnetic measurements, 150, 112

 $\text{Tm}_5 M_2 X (M = \text{Ni,Pd}; X = \text{Sb,Bi})$ pnictides, crystal structure and bonding, **152**, 478

Tight-binding calculations

Ti₅Te₄-related compounds, **154**, 384

Tin

 Ag_8SnE_6 (E = S,Se) chalcogenides, synthesis and characterization, 149, 338

Ba₆Ge₂₃Sn₂, structure and thermoelectric properties, 153, 321

CaErPt₃Sn₅ and CaLuPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112

Ca_{2-x}Mg_xSn, structure, resistivity, and magnetic susceptibility, **152**, 474 CaTmPt₃Sn₅ and CaYbPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112

Cu₂FeSn₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363

Cu₂SnS₃ nanocrystals, synthesis, characterization, and properties, 153, 170

EuSn₃Sb₄ and related metallic Zintl phases, synthesis, structure, and resistivity. **150**, 371

Ga₂O₃-In₂O₃-SnO₂ system, tunneled intergrowth structures, **150**, 294 GdNi₃Sn₂, structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, **150**, 62

(In_{0.5}□_{0.5})[In_{1.5}Sn_{0.5}]S₄, vacant thiospinel, reversible lithiation, pressure-sensitive modeling, **152**, 533

 $In_2O_3-M_2O_3$ (M=Y,Sc) solid solutions doped with, electrical, optical, and structural properties, **153**, 41

In₄Sn₃O₁₂ substituted with Y and Ti, structure and thermoelectric properties, **153**, 349

InSn oxide powders, hydrothermally derived, sintering in air, **154**, 444 Sn⁴⁺, α-Fe₂O₃ substituted with, structural and magnetic properties, neutron diffraction and Mössbauer spectroscopic studies, **151**, 157

¹¹⁹Sn, dopant atoms in Ca₂Fe₂O₅, hyperfine interactions and dynamic characteristics, 151, 313

 A_2T_2 Sn (A = Ce,U; T = Ni,Pd), band magnetism, local spin density functional calculations, **149**, 449

SnBr₂, crystal structure, **149**, 28

SnCl₂, inert pair effects: crystal structure of SnBr₂, 149, 28

 SnO_2 , homogeneous Ge-substituted, sol-gel synthesis and characterization, **154**, 579

SnS₂ single crystals, diamine intercalation compounds of, synthesis and characterization, **150**, 391

Sn-Zn-S system, mechanochemical reactions in, 153, 371

Sr₂Sn(OH)₈, hydrothermal synthesis and structure, 151, 56

UFe₅Sn, synthesis, crystal structure, and magnetic properties, **154**, 551 UNi_{1.9}Sn single crystals, growth, crystal structure, and thermopower, **149**, 120

zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions $R_4{\rm N}^+$ ($R=n{\rm Pr},n{\rm Bu},n{\rm Pen}$) as structure directors for, **152**, 286

Titanium

Ag₂NbTi₃P₆S₂₅, crystal structure, **153**, 55

AgTi₂(PS₄)₃, crystal structure and ionic conductivity, 153, 55

BaTiO₃, flux additions in, overview and prospects, 155, 86

 $\mathrm{Bi}_{4-x}\mathrm{La}_{x}\mathrm{Ti}_{3}\mathrm{O}_{12}$ (x=1,2), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

 $\text{Bi}_{2-x}\text{Sr}_{2+x}\text{Ti}_{1-x}\text{Nb}_{2+x}\text{O}_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66

Ca₂Ta₂O₇-Sm₂Ti₂O₇ system, syntheses in, structures, and crystal chemistry, **150**, 167

Ce_{1-x}Nd_xTiO₃, magnetic properties, **153**, 145

 $Ce_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145

 $(Cr_{1-x}Ti_x)_3B_4$ large crystals, synthesis and analysis, 154, 45

Cu₂FeTi₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363

ACu₃Ti₃FeO₁₂, dielectric constants, 151, 323

ACu₃Ti₄O₁₂, dielectric constants, **151**, 323

(Hg,Ti)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488

In₂O₃-TiO₂-MgO system at 1100 and 1350°C, phase relations, **150**, 276 In₄Sn₃O₁₂ substituted with, structure and thermoelectric properties, **153**, 349

 $K_2Ca_2Ta_2TiO_{10}\cdot 0.8H_2O$ and $K_2SrLaTi_2TaO_{10}\cdot 2H_2O$ Ruddlesden-Popper phases, synthesis, proton exchange, and topochemical dehydration, **155**, 46

LaB₆-(Ti,Zr)B₂ alloys, eutectic crystallization, 154, 165

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, 155, 280

 $La_{1-x}Sm_xTiO_3$ ($0 \le x \le 1$) solid solutions, magnetic properties, 153, 145

 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, structural characterization, **155**, 455

 $LiTi_2O_4$ superconductor and related compounds, Li site occupancy in, NMR study, 152, 397

Li₂Ti₃O₇ H phase, engineered scavenger compound, structural characterization, 152, 546

Li_{2+x}Ti₃O₇, electrochemically obtained, structural study, **153**, 132

Na₂Ti₂Sb₂O, powder neutron diffraction: structure-property relationships, **153**, 275

 $NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11-\delta} \ \ and \ \ NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}\\O_{14-\delta}, \ defect \ chemistry \ and \ electrical \ properties, \ 155, \ 216$

 $Nd_{1-x}TiO_3$ perovskites, metal-insulator phenomena, 155, 177

Nd₁₆Ti₅S₁₇O₁₇, synthesis and structure, **152**, 554

 $0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O_3-0.6Pb(Zn_{1/3}Nb_{2/3})O_3]-0.1PbTiO_3, \\ \ tion\ via\ mechanically\ activated\ nucleation\ and\ growth,\ \textbf{154},\ 321$

Pb(Zr_{0.52}Ti_{0.48})O₃, formation via mechanically activated nucleation and growth, **154**, 321

 $\Pr_{1-x} Nd_x TiO_3$ (0 $\leq x \leq$ 1) solid solutions, magnetic properties, 153, 145

 $Pr_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145

 $Sm_{(1-x)}Gd_xTiO_3$, magnetism, **154**, 619

 $Sm_{1-x}TiO_3$ perovskites, metal-insulator phenomena, 155, 177

 $Sr_{1-3x/2}La_xTiO_3$, A-site cation-vacancy ordering in, HRTEM study, 149, 360

Ti⁴⁺, α-Fe₂O₃ substituted with, structural and magnetic properties, neutron diffraction and Mössbauer spectroscopic studies, **151**, 157

Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and polyphenolic 2D motifs, synthesis and characterization, **152**, 130

chemical and electrochemical behavior in cryolite-alumina melt and in molten aluminum, **154**, 107

chemical vapor deposition, thermodynamic estimation, 154, 157

α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, **154**, 557

Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, 155, 71

TiO2, anatase

 M_3O_5 intergrowth structures formed during low-temperature oxidation of anosovite, **150**, 128

phase transformations induced by ball-milling, kinetics and mechanisms, 149, 41

TiO₂, rutile solid solutions, redox behavior of VIB transition metal ions in, XRD and EPR study, 152, 412

 $Ln_{1-x}Ln'_x TiO_3$ (*Ln* and Ln' = La-Sm; $0 \le x \le 1$) solid solutions, magnetic properties, **153**, 145

 $Ln_{2/3}$ TiO₃ (Ln = Pr,Nd), synthesis and magnetic properties, **149**, 354 Ti₃Rh₂In₃, structure, chemical bonding, and properties, **150**, 19 TiS₂, intercalation of methylamines into, **155**, 326

Ti₅Te₄, compounds structurally related to, bonding and electron counting in, theoretical study, **154**, 384

α-Titanium hydrogenphosphate

α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, **154**, 557

Tolerance factor

effects in $Ln_{1.85}^{3+}M_{0.15}^{2+}$ CuO₄ superconductors, **155**, 138

Topochemical dehydration

Ruddlesden-Popper tantalates and titanotantalates, **155**, 46 Topology

polymeric Ag(I)-hexamethylenetetramine complexes, **152**, 211 Transition metals

doping effects in YB₆₆, 154, 54

Transmission electron microscopy

 Bi_2O_3 -MoO₃ system: compounds with structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, 149, 276

cation loss from BaCa_{0.393}Nb_{0.606}O_{2.91} in aqueous media leading to amorphization at room temperature, **149**, 262

 $LiMn_2O_4$ -based spinels: origin of 3.3 V and 4.5 V steps, **155**, 394 $Li_2Ti_3O_7$ H phase engineered scavenger compound, **152**, 546 $ScB_{17}C_{0.25}$, **154**, 130

Trimethylamine

intercalation into TiS₂, 155, 326

Tris(methylammonium)nonachlorodibismuthate (III)

low-temperature phase transition and structural relationships, **155**, 286 Tungsten

Ce_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates, **149**, 378

 $(Cr_{1-x}W_x)_3B_4$ large crystals, synthesis and analysis, 154, 45

(Hg,W)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488

 $Na_xW_{18}O_{49}$, sodium ordering in, 151, 220

 ${
m Nb_7W_{10}O_{47}}$ tetragonal bronze-type phase, superstructure and twinning, 149, 428

Th_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates, **149**, 378

 U_xWO_3 bronze, preparation by thermal degradation of polyoxotungstates, 149, 378

 $\{[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]\}_n$, 151, 286

 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n$, 151, 286

 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n$, 151, 286

 W_5 As₄, electronic structure, **154**, 384

W carbides, synthesis by temperature programmed reaction with CH₄-H₂ mixtures, **154**, 412

W ions in rutile TiO₂, redox properties, XRD and EPR study, 152, 412

WO₃, reduction-carburization by CH₄-H₂ mixture, 154, 412

RE_xWO₃ (RE = La,Nd) bronze synthesized under high pressure, X-ray diffraction and electron microscopy, **154**, 466

 $W_2O_3 \cdot P_2O_7$ with empty tunnel structure, stabilization, **155**, 112 $Y_2(WO_4)_3$, negative thermal expansion in, **149**, 92

ZnO-WO₃ fluxes, effects on dieletric properties of BaTiO₃, 155, 86

Tunnel structure

 $Ba_{1+x}V_8O_{21}$ bronze, **150**, 330

empty, W₂O₃·P₂O₇ with, stabilization, 155, 112

Ga₂O₃-In₂O₃-SnO₂ system, **150**, 294

PbVO₂PO₄, α -layered and β -tunnel structures, **149**, 149 Twinning

Nb₇W₁₀O₄₇ tetragonal bronze-type phase, **149**, 428

U

Ultraviolet emission

by $BaHf_{1-x}Zr_x(PO_4)_2$ under X-ray excitation, 155, 229

Ultraviolet-visible spectroscopy

 $(C_2H_{10}N_2)[Ni(H_2O)_6](HPO_4)_2$, 154, 460

 $Cs_2CuP_3S_9$, chiral compound with chiral screw helices, **151**, 326 α - and β -[$Cu_2X(C_5H_3N_2O_2)_2(H_2O)$] (X = Cl,Br), **152**, 174

Hranium

1D uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, hydrothermal syntheses, structures, and fluorescence spectroscopy, 154, 635

UFe₅Sn, synthesis, crystal structure, and magnetic properties, **154**, 551 UNi_{1.9}Sn single crystals, growth, crystal structure, and thermopower, **149**, 120

 $(UO_2)_3(VO_4)_2 \cdot 5H_2O$, synthesis and crystal structure, 150, 72

 $M_6(\mathrm{UO}_2)_5(\mathrm{VO}_4)_2\mathrm{O}_5$ ($M=\mathrm{Na},\mathrm{K}$), synthesis and crystal structure, 155, 342

U₃S₅, uranium valency in, **150**, 336

 U_2T_2Sn (T = Ni,Pd), band magnetism, local spin density functional calculations, **149**, 449

U_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates, 149, 378

٧

Valence

intermediate, in Ce₂Ni₂Cd, **150**, 139

uranium in U₃S₅, 150, 336

Valence electron count

in compounds structurally related to Ti₅Te₄, theoretical study, **154**, 384 Vanadium

 $Ba_{1+x}V_8O_{21}$ bronze with tunnel structure, hydrothermal synthesis and crystal structure, **150**, 330

 $Ba_6[V_{10}O_{30}(H_2O)] \cdot 2.5H_2O$ with unusual arrangement of V^{IV} -O polyhedra, hydrothermal synthesis and crystal structure, **151**, 130

 $BiMg_2VO_6$, variable-temperature X-ray diffraction study, **149**, 143 $Bi_{6.67}O_4(VO_4)_4$, existence of, **154**, 435

 $\mathrm{Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}}$ ceramics, sintering and conductivity, effect of particle size, **155**, 273

Ce_{1-y}Bi_yVO₄ with zircon-type structure, preparation by solid-state reaction in air, **153**, 174

CeVO₄ and Ce_{1-x}MVO_{4-0.5x} (M = Ca,Sr,Pb) with zircon-type structure, preparation by solid-state reaction in air, **153**, 174

 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514

(C₄H₁₂N₂)[(VO)(VO₂)₂(H₂O)(PO₄)₂], hydrothermal synthesis and characterization, **154**, 514

 $(Cr_{1-x}V_x)_3B_4$ large crystals, synthesis and analysis, 154, 45

(Hg,V)Sr₂(Ln,Ce)₂Cu₂O₂ 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488

hydrated lithium and sodium vanadium bronzes, synthesis, 149, 443

LaVO₄, hydrothermal synthesis and crystal structure, **152**, 486

LaV₃O₉, hydrothermal synthesis and crystal structure, **152**, 486

β-LiVOAsO₄, synthesis, structure, and physical studies, **150**, 250

Mo₂NiB₂ boride base cements with V additions, mechanical properties and structure, effects of Mo/B atomic ratio, **154**, 263

 $Na_3[B_6O_9(VO_4)]$, synthesis and crystal structure, **150**, 342

 $(NH_4)_{0.13}V_{0.13}Mo_{0.87}O_3$ solid solution, properties, 152, 353

α-Ni(VO₃)₂·2H₂O and Ni(VO₃)₂·4H₂O, synthesis and crystal structure, **152**, 511

PbBi₆O₄(VO₄)₄, existence of, **154**, 435

PbVO₂PO₄, α -layered and β -tunnel structures, **149**, 149

polymeric oxovanadium(IV) complexes, mechanochemical reaction with Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines. 153, 9

 β -rhombohedral boron doped with

modulated photocurrent measurements, 154, 307

thermoelectric properties, 154, 13

 SrV_4O_9 in metastable state, synthesis and crystal structure, **149**, 414 $(UO_2)_3(VO_4)_2 \cdot 5H_2O$, synthesis and crystal structure, **150**, 72

 $M_6(\text{UO}_2)_5(\text{VO}_4)_2\text{O}_5$ (M = Na,K), synthesis and crystal structure, 155, 342 vanadyl phosphate intercalates

with acetone, structural analysis, 150, 356

with C₄ diols, preparation and characterization, 151, 225

V₃As₂, bonding analysis, 154, 384

(V₂O₇)⁴⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332

 AV_4O_9 ($A = Ca,Sr,Cs_2,NH_2(CH_2)_4NH_2$), spin exchange interactions of, spin dimer analysis, **153**, 263

 $(V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\} \cdot 2H_2O$, hydrothermal synthesis, structure, and magnetic behavior, **155**, 238

 $\{V_{18}O_{42}(XO_4)\}\ (X = V,S,Cl)$, extended solids composed of, synthesis, structure, and physicochemical properties, **152**, 105

(VO)₂P₂O₇, single crystal growth at 3 GPa, 153, 124

 Ln_7 VO₄Se₈ (Ln = Nd,Sm,Gd), synthesis and characterization, **154**, 564 ZrSiO₄ doped with, hyperfine characterization, **150**, 14

Vibration frequencies

boron compounds, quasi-classical determination, 154, 148

W

Water

Ba₆[V₁₀O₃₀(H₂O)] · 2.5H₂O with unusual arrangement of V^{IV}-O polyhedra, hydrothermal synthesis and crystal structure, **151**, 130

 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236

[(CH $_3$ NH $_3$) $_{0.5}$ (NH $_4$) $_{1.5}$]Sb $_8$ S $_{13} \cdot 2.8$ H $_2$ O, hydrothermal synthesis and crystal structure, **155**, 409

 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514

(C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460

 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, hydrothermal synthesis and characterization, **154**, 514

$$\begin{split} &[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}, \text{ isolation and transformation to} \\ &[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}, \textbf{150}, 417 \end{split}$$

Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143

α- and β-[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174

hydrated lithium and sodium vanadium bronzes, synthesis, 149, 443

K₂Ca₂Ta₂TiO₁₀·0.8H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46

K₂MnF₅·H₂O, neutron diffraction study, **150**, 104

K₂SrLaTi₂TaO₁₀·2H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46

 $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O$ ($M = K, NH_4$), crystal structure and thermal behavior, **150**, 81

Na₄Co₃H₂(PO₄)₄·8H₂O, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292

Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122

[N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324

 $\alpha\text{-Ni}(VO_3)_2 \cdot 2H_2O$ and Ni(VO_3)_2 \cdot 4H_2O, synthesis and crystal structure, **152**, 511

 $(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se; M = Mn,Ni), synthesis and structure, **153**, 195

 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153**, 195

Rb₂[B₄O₅(OH)₄] · 3.6H₂O, crystal structure and thermal behavior, **149**, 197

Rb₂Sb₈S₁₃·3.3H₂O, hydrothermal synthesis and crystal structure, 155, 409

α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, **154**, 557

(UO₂)₃(VO₄)₂·5H₂O, synthesis and crystal structure, 150, 72

(V^{IV}O)₂(H₂O){O₃P-(CH₂)₃-PO₃}·2H₂O, hydrothermal synthesis, structure, and magnetic behavior, **155**, 238

zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen) as structure directors for, **152**, 286

 $Zn_4(PO_4)_2(HPO_4)_2 \cdot 0.5(C_{10}H_{28}N_4) \cdot 2H_2O$, hydrothermal synthesis and crystal structure, **154**, 368

ZrPOF-n family with 2D and 3D structure types, synthesis and crystal structures, 149, 21

Wide-angle CBED

rare-earth oxide pyrochlores, comparison with results of atomistic computer simulation, 153, 16

Workshop on the Present Status and Future Developments of Solid State Chemistry and Materials, 149, 3

Worm holes

surfactant-templated three-dimensional disordered frameworks perforated with, **152**, 21

Χ

X-ray absorption near-edge structure

CeO₂ nanocrystals, 149, 408

NiCo₂O₄, 153, 74

 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x = 1,1.5,2) Ruddlesden–Popper phases, 155, 96

X-ray absorption spectroscopy

Cd_{1-δ}Mn₂O_y, Mn-K edge study of crystal chemistry, **149**, 252

CeO₂ nanocrystals, **149**, 408

complex chalcogenides, as fingerprint of local environment, 150, 363

X-ray diffraction, see also Powder X-ray diffraction

BaBi₃O_{5.5}: crystal growth and structure, **152**, 435

BiMg₂VO₆ at different temperatures, **149**, 143

(1 - x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related phases, **149**, 218

BN at high pressure, 154, 280

Ca_{4.78}Cu₆O_{11.60} crystal structure, **151**, 170

carbonate apatite with A-site substitutions, 155, 292

charge-density-wave state of NiTa_{1.98}Nb_{0.02}Se₇, **153**, 152

 $[Co(4,4'-bipyridine)_{2.5}(NO_3)_2] \cdot 2phenanthrene, 152, 280$

Cs₂CoCl₄ at high pressure, 153, 212

Cs₂CuCl₄ at high pressure, **153**, 212

 $Cu_2Gd_{2/3}S_2$: interlayer short-range order of Gd vacancies, **152**, 332 LiIn(MoO₄)₂, **154**, 498

Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D incommensurate modulation, **152**, 573

Mo₂NiB₂ boride base cements with Cr and V additions: effects of Mo/B atomic ratio, **154**, 263

Na₃In(PO₄)₂ polymorphous modifications, 149, 99

 $Na_{3.64}Mg_{2.18}(P_2O_7)_2$ and $Na_{3.64}Ni_{2.18}(P_2O_7)_2$, **52**, 323

 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), 155, 37 $NiCo_2O_4$, 153, 74

Ni effects on calcium phosphate formation, 151, 163

pillared 3D Mn(II) coordination network with rectangular channels, 152, 152

 RP_5O_{14} (R = La, Nd, Sm, Eu, Gd), **150**, 377

Pr₂O₃ redox reaction in ZnO sintered ceramics at high temperature, **149**, 349

 $Rb_2(HSO_4)(H_2PO_4)$ and $Rb_4(HSO_4)_3(H_2PO_4)$ single crystals, **149**, 9 $ScB_{17}C_{0.25}$, single-crystal study, **154**, 130

superconductors of 2212 type in Tl-Hg-Ba-Sr-Ca-Cu-O system, 153,

 ${\rm TiO_2}$ rutile solid solutions: redox behavior of VIB transition metal ions, 152, 412

(VO)₂P₂O₇ phase grown at 3 GPa, 153, 124

Y₂Si₂O₇ phase transformations in gel- and mixed-powder-derived polymorphs, 149, 16

[Zn-Al-Cl] layered double hydroxide after thermal treatment, simulation, 152, 568

ZrO₂ nanocrystals: crystallite size effect on tetragonal-monoclinic transition, 149, 399

X-ray phosphors

 $BaHf_{1-x}Zr_x(PO_4)_2$ emitting ultraviolet under X-ray excitation, 155, 229 X-ray photoelectron spectroscopy

cation loss from $BaCa_{0.393}Nb_{0.606}O_{2.91}$ in aqueous media leading to amorphization at room temperature, $149,\,262$

NiCo₂O₄, 153, 74

U₃S₅: uranium valency, **150**, 336

Υ

Ytterbium

Ba₂YbTaO₆ with ordered perovskite structure, magnetic susceptibility, **150**, 31

CaYbPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, 150, 112

Yb3+ doped in Ba2LuTaO6, EPR study, 150, 31

YbB₆, interband transitions, IR-active phonons, and plasma vibrations, 154, 87

Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55

Yb₃Pd₄Ge₄, order of Pd and Ge atoms in, 154, 329

 $(Y,Yb)Al_3(BO_3)_4$ solid solutions, crystal growth and characterization, 154, 317

Yttrium

AlSr₂YCu₂O₇, crystal growth and structure, **149**, 256

 In_2O_3 - Y_2O_3 solid solutions doped with Sn, electrical, optical, and structural properties, **153**, 41

 $In_4Sn_3O_{12}$ substituted with, structure and thermoelectric properties, 153, 349

 Y_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bonding, 152, 478

(Y,RE)Al₃(BO₃)₄ solid solutions (RE = Nd,Gd,Ho,Yb,Lu), crystal growth and characterization, **154**, 317

YB₆, interband transitions, IR-active phonons, and plasma vibrations, 154, 87

YB₆₆, effect of transition metal doping, 154, 54

YBa₂Cu₄O₈ superconductor, HRTEM surface profile imaging, 149, 327

YB₄₁Si_{1.2}, transport phenomena, 154, 229

YCo₄B, magnetic properties, 154, 242

YCu₃Ti₃FeO₁₂, dielectric constant, **151**, 323

Y_{2/3}Cu₃Ti₄O₁₂, dielectric constant, **151**, 323

YMn₂D_{1.15}, structural and magnetic properties, 154, 398

YMn₂D₂ single phase, synthesis, study by *in situ* neutron diffraction, **150.** 183

Y₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246

Y-Pd-B-C, chemical and superconducting properties, 154, 114

Y₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, **152**, 441

Y₂Si₂O₇, phase transformations in gel- and mixed-powder-derived polymorphs, X-ray diffraction and ²⁹Si MAS NMR studies, **149**, 16

 $Y_2(WO_4)_3$, negative thermal expansion in, 149, 92

Ζ

Zinc

BaLaZnRuO₆, atomic and magnetic long-range ordering in, **150**, 383 BiZn₂PO₆, crystal structure, **153**, 48

 $[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}$, isolation and transformation to $[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}$, **150**, 417

Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, 152, 526

FeZn₁₀ and Fe₁₃Zn₃₉, synthesis, crystal structure, and electronic and bonding analysis, **151**, 85

intercalation compounds of anionic oxalato complexes with layered double hydroxides, **153**, 301

LuFeO₃(ZnO)_m, charge distribution analysis: effect of coordination polyhedra shape on cation distribution, **150**, 96

mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21

Na_{2-x}Ag_xZnP₂O₇, Ag(I) luminescence in, **149**, 284

Na₂ZnP₂O₇, crystal structure, **152**, 466

0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O₃-0.6Pb(Zn_{1/3}Nb_{2/3})O₃]-0.1PbTiO₃, formation via mechanically activated nucleation and growth, **154**, 321

Sn-Zn-S system, mechanochemical reactions in, 153, 371

TlZn(PO₃)₃, structure and luminescence, 154, 584

 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n$, 151, 286

 $\{ [W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO) \}_n$, 151, 286

[Zn-Al-Cl] layered double hydroxide, thermally treated, X-ray diffraction pattern simulation, 152, 568

ZnCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113

 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107

ZnGa₂O₄ self-activated phosphors, luminescent properties, systematic tuning by Cd²⁺ substitution, **150**, 204

ZnO, sintered ceramics, redox reaction of Pr₂O₃ in, 149, 349

ZnO-B₂O₃ fluxes, effects on dieletric properties of BaTiO₃, 155, 86

ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, structures and physical properties, **155**, 312

(ZnO)₅In₂O₃, isoelectronically substituted, structure and thermoelectric transport properties, **150**, 221

ZnO-WO₃ fluxes, effects on dieletric properties of BaTiO₃, 155, 86

 $Zn_4(PO_4)_2(HPO_4)_2\cdot 0.5(C_{10}H_{28}N_4)\cdot 2H_2\bar{O},$ hydrothermal synthesis and crystal structure, **154**, 368

Zintl phases

 Ba_6Ge_{25-x} , $Ba_6Ge_{23}Sn_2$, and $Ba_6Ge_{22}In_3$, structure and thermoelectric properties, **153**, 321

Ba₃SiI₂, synthesis, structure, and properties, **152**, 460

metallic, related to EuSn₃Sb₄, synthesis, structure, and resistivity, **150**, 371

Yb₅In₂Sb₆, with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55

Zirconium

 $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq$ 1) mixed perovskites, high-pressure Raman study, **149**, 298

 $BaHf_{1-x}Zr_x(PO_4)_2$, UV-emitting X-ray phosphor, 155, 229

t'_{meta}-(Ce_{0.5}Zr_{0.5})O₂ phase prepared by reduction and successive oxidation of t' phase, electrical conductivity, **151**, 253

Cu^I_{0.5}Mn^{II}_{0.25}Zr₂(PO₄)₃ Nasicon-type phosphate, structure and luminescence, 152, 453

Ge-Ta-Zr system, M₅Ge₄ compounds in, structure-composition relations and fractional site occupancy, **150**, 347

LaB₆-(Ti,Zr)B₂ alloys, eutectic crystallization, 154, 165

 $LiZr_2(PO_4)_3$, β' and β phases, order-disorder and mobility of Li^+ in, neutron diffraction study, **152**, 340

Pb(Zr_{0.52}Ti_{0.48})O₃, formation via mechanically activated nucleation and growth, **154**, 321

 β -rhombohedral boron doped with, thermoelectric properties, **154**, 13 ZrB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157

ZrIn₂, structure, chemical bonding, and properties, 150, 19

ZrO₂ nanocrystals, tetragonal-monoclinic transition, crystallite size effect in, XRD and Raman spectroscopic study, 149, 399

 $(ZrO_2)_{0.8}$ - $(\alpha$ -Fe₂O₃)_{0.2} powder for gas sensing applications, mechanical alloying and thermal decomposition, **155**, 320

 $ZrM(OH)_2(NO_3)_3$ (M = K,Rb), ab initio structure determination from X-ray powder diffraction, 149, 167

ZrPOF-*n* family with 2D and 3D structure types, synthesis and crystal structures, **149**, 21

ZrSiO₄, pure and doped, hyperfine characterization, **150**, 14 Zircon-type phases

 $CeVO_4$, $Ce_{1-x}MVO_{4-0.5x}(M=Ca,Sr,Pb)$, and $Ce_{1-y}Bi_yVO_4$, preparation by solid-state reaction in air, **153**, 174

Zone center frequencies

tetragonal CdAl₂Se₄, 153, 317