Cumulative Subject Index for Volumes 149–1551 Α Acetone vanadyl phosphate intercalated with, structural analysis, 150, 356 Acid delithiation partial, effects on electrochemical insertion properties of Ni-stabilized LiMn₂O₄ spinel oxides, **150**, 196 Activation energy Fe-doped boron, 154, 188 Alkali halides solid solution, mixing model, 153, 118 Alkali-metal amalgams synthesis and structure, 149, 419 Alkoxides Synroc precursor heated to 800 °C, intermediate cubic phase crystallized from, fluorite structure, 150, 209 preparation in polyol media, thermodynamic approach, 154, 405 Aluminum α -AlB₁₂ crystal chemistry, 154, 168 strength and creep in, 154, 191 γ-AlB₁₂, crystal chemistry, **154**, 168 Al₃BC₃, 300-K equation of state and high-pressure phase stability, 154, AlSr₂YCu₂O₇, crystal growth and structure, 149, 256 BaAlBO₃F₂, crystal structure, 155, 354 B₄₈Al₃C₂, interband transitions and optical phonons, 154, 75 CaAl₁₂Si₄O₂₇ high-pressure phase with Al₆O₁₉ clusters, synthesis and structure, 153, 391 CaO:Al₂O₃:Nb₂O₅ system, phase equilibria and dielectric properties, 155, 78 CdAl₂Se₄, zone center frequencies in tetragonal phase, 153, 317 cryolite-alumina melt, TiB2 in, chemical and electrochemical behavior, GdNi₃Al₂, structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, 150, 62 intercalation compounds of anionic oxalato complexes with layered double hydroxides, 153, 301 $KAlQ_2$ (Q = Se,Te) chalcogenides with stacking faults, synthesis and structure, 149, 242 La₃Al_{0.44}Si_{0.93}S₇, crystal structure, **155**, 433 Mg-Al hydrotalcites, anion-exchanged, properties of, effects of guest-host interactions, 155, 332 Mg:Al ratio, effect on borate/nitrate or silicate/nitrate exchange in hydrotalcite, 151, 272 molten, TiB2 in, chemical and electrochemical behavior, 154, 107 Na₂Al₂(BO₃)₂O, crystal structure, comparison with other layered oxyborates and SiP₂O₇, 154, 344 Na₂SO₄-Al₂O₃ conductivity enhancement, 155, 154 ionic conductivity, mechanism and role of preparatory parameters, 153, 287 [N2C4H12]Al2(PO4)(HPO4)(C2O4)H2O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150,** 324 [NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, 151, 145 Ni_{1-x}Cu_xFeAlO₄, Mössbauer effect study, **149**, 434 Pb₅Al_{2.96}Cr_{0.04}F₁₉, ferroelastic phase, crystal structure at 300 K, 155, 427 Sc₂AlB₆, crystal growth and structure, **154**, 49 SrAl₂B₂O₇, 150, 404 Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, 155, 71 $(Y,RE)Al_3(BO_3)_4$ solid solutions (RE = Nd,Gd,Ho,Yb,Lu), crystal growth and characterization, 154, 317 [Zn-Al-Cl] layered double hydroxide, thermally treated, X-ray diffraction pattern simulation, 152, 568 Amine phosphates in preparation of open-framework metal phosphates, 152, 302 Ammonium $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O, \ \ hydrothermal \ \ synthesis \ \ and$ crystal structure, 155, 409 La(H₂O)₂NH₄(C₂O₄)₂·H₂O, crystal structure and thermal behavior, $(NH_4)_{0.13}V_{0.13}Mo_{0.87}O_3$ solid solution, properties, **152**, 353 quaternary ions R_4N^+ (R = nPr, nBu, nPen), as structure directors for synthesis of zeolite-like heterobimetallic cyanide frameworks, 152, 286 Amorphization BaCa_{0.393}Nb_{0.606}O_{2.91} at room temperature due to cation loss in aqueous media, 149, 262 Amorphous alloys Co₇₇B₂₃, crystallization mechanism, 154, 145 Analytical electron microscopy paracrystal formation from $Ni_{1-x}O$ and CaO upon interdiffusion, 152, 421 M₃O₅ intergrowth structures formed during low-temperature oxidation of anosovite, 150, 128 phase transformations induced by ball-milling, kinetics and mechanisms, 149, 41 Anion doping effects on conductivity of Na₂SO₄, 155, 154 Anionic disorder in Eu₃(BO₃)₂F₃, evidence from Eu³⁺ luminescence: comparison with $Ba_2Eu(CO_3)_2F_3$, **153**, 270 Anosovite oxidation at low temperature, M3O5-anatase intergrowth structures formed during, analysis, 150, 128 1-(9-Anthrylethynyl)-4-chloromethyl-2,5-dimethoxybenzene doped in polymer, photoluminescence and electroluminescence, effect of excimer behavior, 153, 192 Anticotunnite reversible phase transition of antifluorite to, in Li2S at high pressures, **154**, 603 Antiferromagnetic ordering long-range, in $BaLaMRuO_6$ (M = Mg,Zn), 150, 383 ¹Boldface numbers indicate volume; lightface numbers indicate pagnation. Antiferromagnetic transition $BaLn_2MnS_5$ (*Ln* = La,Ce,Pr), **153**, 330 TbB₄₁Si_{1.2}, 154, 223 Antiferromagnetism in ladder-like Cu(II) coordination polymers, 152, 183 Antifluorite reversible phase transition to anticotunnite in Li₂S at high pressures, 154, 603 Antimony $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with p-type thermoelectric cage structure, synthesis and characterization, **151**, 61 [(CH $_3$ NH $_3$) $_{0.5}$ (NH $_4$) $_{1.5}$]Sb $_8$ S $_{13} \cdot 2.8$ H $_2$ O, hydrothermal synthesis and crystal structure, **155**, 409 Eu₁₆Sb₁₁, synthesis, structure, and properties, 155, 168 EuSn₃Sb₄ and related metallic Zintl phases, synthesis, structure, and resistivity, **150**, 371 Hg₆Sb₄BiBr₇ and Hg₆Sb₅Br₇, built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, 154, 350 NaSb₃O₂(PO₄)₂, synthesis and structure, 151, 21 Na₂Ti₂Sb₂O, powder neutron diffraction: structure-property relationships, **153**, 275 γ -NiSb nanocrystals, synthesis by solvothermal coordination–reduction route at low temperature, **155**, 42 [(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370 $Rb_2Sb_8S_{13}\cdot 3.3H_2O,$ hydrothermal synthesis and crystal structure, 155, 409 RE_5M_2 Sb (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; <math>M = Ni,Pd) pnictides, crystal structure and bonding, **152**, 478 Sb₅PO₁₀, synthesis and structure, **155**, 451 Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55 Apatite calcium fluorapatite, conversion into calcium hydroxyapatite under alkaline hydrothermal conditions, **151**, 65 Ca_{9.75}[(PO₄)_{5.5}(CO₃)_{0.5}]CO₃, A-type, structure analysis by single-crystal X-ray diffraction, **155**, 292 $Ca_6Sm_2Na_2(PO_4)_6F_2$, crystal structure and polarized Raman spectra, 149, 308 $Cd_5(PO_4)_3Br$ and $Cd_5(PO_4)_3I$, incommensurate modulation, **150**, 154 $La_5Si_2BO_{13}$ analog of, synthesis and neutron diffraction study, **155**, 389 related phosphates, synthesis and characterization, 149, 133 Arsenic Bi_{6.67}O₄(AsO₄)₄, existence of, **154**, 435 Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS glasses, magnetic susceptibility and local structure, 152, 388 $GdCuAs_2,$ symmetry-breaking transitions through $GdCuAs_{1.15}P_{0.85}$ to $GdCuP_{2.20},$ 155, 259 Hg₆As₄BiCl₇ built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, **154**, 350 β -LiVOAsO₄, synthesis, structure, and physical studies, **150**, 250 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, 155, 37 PbBi₆O₄(AsO₄)₄, existence of, 154, 435 V₃As₂, bonding analysis, **154**, 384 W₅As₄, electronic structure, **154**, 384 Aryloxides Ti(IV)-aryloxide network materials, synthesis and characterization, **152**, 130 Aryl stacking interactions structural mimicry by polymorphous one-dimensional tetrapyridylporphyrin coordination polymers, **152**, 253 Atomic force microscopy cation loss from $BaCa_{0.393}Nb_{0.606}O_{2.91}$ in aqueous media leading to amorphization at room temperature, **149**, 262 [(Pb,Sb)S]_{2.28}NbS₂ Franckeite-type misfit compounds: distribution of Pb and Sb atoms in (Pb,Sb)S layers, **149**, 370 Atomic ordering long-range, in $BaLaMRuO_6$ (M = Mg,Zn), 150, 383 Atomistic computer simulation rare-earth oxide pyrochlores, comparison with results of wide-angle CBED, 153, 16 Atomistic free-energy minimization analysis of chemical and thermal expansion of $(La_{1-x}Ca_x)CrO_3$, **149**, 320 Aurivillius phases low-temperature reaction with halides, 150, 416 three-layer, cation disorder in, 153, 66 E Ball-milling anatase phase transformations induced by, kinetics and mechanisms, 149, 41 mechanochemical reactions in Sn-Zn-S system, 153, 371 $(ZrO_2)_{0.8}\text{-}(\alpha\text{-Fe}_2O_3)_{0.2}$ powder for gas sensing applications, 155, 320 Band gap boron-silicon thin film prepared by pulsed laser deposition, **154**, 141 pure and V-doped β -rhombohedral boron, **154**, 307 Band magnetism A_2T_2 Sn (A = Ce,U; T = Ni,Pd), local spin density functional calculations, **149**, 449 Band structure CdCr₂S₄ and CdCr₂Se₄ spinels, **155**, 198 $Dy_6MTe_2 (M = Fe,Co,Ni), 155, 9$ EuSn₃Sb₄ and related Zintl phases, 150, 371 graphite monofluoride, analysis with 3D cyclic cluster approach, 150, 286 $K_{1.8}Mo_9S_{11}$, 155, 124 La₅Cu₆O₄S₇, **155**, 366 LaTe₂, **149**, 155 A_2 Mo₉S₁₁ (A = K,Nb), **155**, 124 Rb₅Au₃O₂, **155**, 29 Sr₂NiN₂, **154**, 542 W₅As₄, **154**, 384 Barium BaBi₃O_{5.5}, crystal growth and structure, **152**, 435 $BaMBO_3F_2$ (M = Ga,Al), crystal structure, 155, 354 BaCa_{0.393}Nb_{0.606}O_{2.91}, cation loss in aqueous media leading to amorphization at room temperature, **149**, 262 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), synthesis and structure, 149, 384 $BaCe_xZr_{1-x}O_3$ (0 $\le x \le 1$) mixed perovskites, high-pressure Raman study, **149**, 298 Ba₂CoNbO₆ perovskite, magnetic transition in, 151, 294 Ba₈Co₇O₂₁, synthesis and structure, **151**, 77 $Ln_{1.85}^{3}$ Ba $_{0.15}^{2}$ CuO₄ superconductors, true tolerance factor effects in, **155**, 138 $Ba_4Er_2Cu_7O_{15-\delta}$, structural effects of Au and Al incorporation, **150**, 228 $Ba_2Eu(CO_3)_2F_3$, optical behavior, comparison with $Eu_3(BO_3)_2F_3$, **153**, 270 Ba₂FeNbO₆ perovskites, magnetic susceptibility and Mössbauer spectroscopy, 154, 591 BaGa₂B₂O₇, crystal structures, **154**, 598 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with *p*-type thermoelectric cage structure, synthesis and characterization, **151**, 61 BaGa₂O₄, stuffed framework structure, 154, 612 Ba₆Ge_{25-x}, structure and thermoelectric properties, 153, 321 Ba₂₄Ge₁₀₀, preparation and structure, **151**, 117 Ba₆Ge₂₂In₃, structure and thermoelectric properties, **153**, 321 Ba₆Ge₂₃Sn₂, structure and thermoelectric properties, 153, 321 $BaHf_{1-x}Zr_x(PO_4)_2$, UV-emitting X-ray phosphor, 155, 229 $BaIr_{1-x}Co_xO_{3-\delta}$ (x = 0.5,0.7,0.8) perovskites, structural chemistry and electronic properties, **152**, 361 BaLaMRuO₆ (M = Mg,Zn), atomic and magnetic long-range ordering in. 150, 383 BaLiF₃ doped with Ce³⁺, optical spectroscopy properties and charge compensation, **150**, 178 Ba₂LuTaO₆, Yb³⁺ doped in, EPR study, **150**, 31 BaMnS₂, magnetic properties, 155, 305 BaLn₂MnS₅ (Ln = La,Ce,Pr), crystal structures and magnetic properties, **153**, 330 Ba₄Nd₂Cd₃Se₁₀, synthesis and structure, 149, 384 BaRuO₃, bond valence analysis, 151, 245 Ba₄Ru₃O₁₀, crystal structure and compressibility, **149**, 137 Ba₃SiI₂, synthesis, structure, and properties, 152, 460 BaSm₄(SiO₄)₃Se, crystal structure, 155, 433 Ba_{1-x}Sm_xSO₄, Sm²⁺ crystal chemistry and stability in, 154, 535 Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, 155, 305 BaTiO₃, flux additions in, overview and prospects, 155, 86 $Ba_{1+x}V_8O_{21}$ bronze with tunnel structure, hydrothermal synthesis and crystal structure, 150, 330 Ba₆[V₁₀O₃₀(H₂O)] · 2.5H₂O with unusual arrangement of V^{IV}-O polyhedra, hydrothermal synthesis and crystal structure, **151**, 130 Ba₂YbTaO₆ with ordered perovskite structure, magnetic susceptibility, **150.** 31 in chlorapatite, effects on topotaxial replacement by hydroxyapatite under hydrothermal conditions, **154**, 569 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies, **150**, 188 LaBaCuGaO₅, phase transition induced by high pressure, 155, 372 LaCoO₃–LaMnO₃–BaCoO_z–BaMnO₃ system, phase equilibria, **153**, 205 NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11- δ} and NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y} O_{14- δ}, defect chemistry and electrical properties, **155**, 216 Pr_{1-x}Ba_xCoO₃ perovskite, magnetic order, magnetic circular dichroism spectroscopic study, **152**, 577 Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, 153, 106 $Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y$, superstructure derived from, X-ray and neutron-powder diffraction, **155**, 22 $YBa_2Cu_4O_8$ superconductor, HRTEM surface profile imaging, 149, 327 Base cements Mo₂NiB₂, with Cr and V additions, mechanical properties and structure, effects of Mo/B atomic ratio, **154**, 263 Batteries electrochemical insertion properties of Ni-stabilized LiMn₂O₄ spinel oxides, effects of partial acid delithiation, **150**, 196 1,3,5-Benzenetricarboxylate hydrogen bond-directed hexagonal frameworks based on, 152, 261 N-Benzyl piperidinium dihydrogenmonophosphate crystal structure and phase transitions, 155, 298 Beryllium intercalation compounds of anionic oxalato complexes with layered double hydroxides, **153**, 301 Bipyridine [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280 4,4'-Bipyridylethane coordination polymers with, synthesis and structure, **152**, 113 Bismuth BaBi₃O_{5.5}, crystal growth and structure, 152, 435 RE_5M_2 Bi (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; <math>M = Ni,Pd) pnictides, crystal structure and bonding, **152**, 478 Bi₁₄CrO₂₄, crystal structure, **149**, 209 $A_3 \text{Bi}_5 \text{Cu}_2 \text{S}_{10}$ (A = Rb,Cs), structure and conductivity, 155, 243 BiCu₃Ti₃FeO₁₂, dielectric constant, 151, 323 Bi_{2/3}Cu₃Ti₄O₁₂, dielectric constant, **151**, 323 Bi_{0.775}La_{0.225}O_{1.5} of rhombohedral Bi-Sr-O type, structure and conductivity optimization by polycationic substitutions for La, **149**, 341 Bi_{1-y}La_yO_{1.5} monoclinic solid solution, identification and structural relationship to rhombohedral Bi-Sr-O type, **151**, 281 $Bi_{4-x}La_xTi_3O_{12}$ (x = 1,2), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 BiMg₂VO₆, variable-temperature X-ray diffraction study, 149, 143 Bi₂MoO₆ catalyst, high-temperature incommensurate-to-commensurate phase transition, **155**, 206 Bi₂Nd₄O₉ monoclinic phase, structure, 153, 30 $\text{Bi}_{2-x}\text{Nd}_x\text{Ru}_2\text{O}_{7-y}$ (0 < x < 2) pyrochlores, metal–nonmetal transition in, structural studies, **151**, 25 (1-x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related phases, electron diffraction and XRD studies, **149**, 218 Bi_2O_3 -Mo O_3 system, EDS and TEM study: compounds with structure based on $[Bi_12O_{14}]_{\infty}$ columns, 149, 276 $Bi_{6.67}O_4(XO_4)_4$ (X = P,V,As), existence of, **154**, 435 Bi₂Pb₂O₇ with pyrochlore structure, hydrothermal synthesis and characterization, 149, 314 $BiM_4^{2+}(PO_4)_3O$ ($M^{2+}=Ca$,Sr), synthesis and characterization, **149**, 133 $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$ ceramics, sintering and conductivity, effect of particle size, **155**, 273 BiSeO₃Cl, crystal structure and dielectric and nonlinear optical properties, 149, 236 1201 Bi_{0.4}Sr_{2.6}MnO_{5-δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6-δ} with 1:1 Bi–Sr ordering, synthesis and characterization, **151**, 210 $\text{Bi}_{2-x}\text{Sr}_{2+x}\text{Ti}_{1-x}\text{Nb}_{2+x}\text{O}_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 Bi_2TeO_5 , $Bi_2Te_2O_7$, and α - and β - $Bi_2Te_4O_{11}$, IR spectra, 152, 392 BiZn₂PO₆, crystal structure, **153**, 48 Ce_{1-y}Bi_yVO₄ with zircon-type structure, preparation by solid-state reaction in air, **153**, 174 (CH₃NH₃)₃Bi₂Cl₉, low-temperature phase transition and structural relationships, 155, 286 Eu₁₆Bi₁₁, synthesis, structure, and properties, 155, 168 Hg₆As₄BiCl₇ and Hg₆Sb₄BiBr₇, built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, 154, 350 KBi₂CuS₄, structure and conductivity, 155, 243 Mo_{0.16}Bi_{0.84}O_{1.74}, high-temperature cubic fluorite-type phase with 3D incommensurate modulation, synthesis and structure, **152**, 573 $PbBi_6O_4(XO_4)_4$ (X = P,V,As), existence of, **154**, 435 Pb₅Bi₁₈P₄O₄₂, crystal structure, **151**, 181 Sr_{1.25}Bi_{0.75}O₃ and Sr_{0.4}K_{0.6}BiO₃, structure determination as function of temperature from synchrotron X-ray powder diffraction data, **150**, 316 $Sr_{3.75}K_{1.75}Bi_3O_{12}$ and $Sr_{3.1}Na_{2.9}Bi_3O_{12},$ synthesis and characterization, $\textbf{152},\, 492$ Blue bronze K_{0.3}MoO₃, interactions of sliding charge-density waves with phonons, **155**, 105 Bonding Dy_6MTe_2 (M = Fe,Co,Ni), **155**, 9 in FeZn₁₀ and Fe₁₃Zn₃₉, **151**, 85 GdCuAs₂, GdCuAs_{1,15}P_{0,85}, and GdCuP_{2,20}, 155, 259 M₅Ge₄ compounds in Ge-Ta-Zr system, **150**, 347 in IrIn₂, Ti₃Rh₂In₃, and ZrIn₂, 150, 19 rare-earth-rich ternary pnictides RE_5M_2X (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu;M = Ni,Pd;X = Sb,Bi), **152**, 478 in Ti₅Te₄-related compounds, theoretical study, 154, 384 ``` Bond valence BaRuO₃, 151, 245 ErBaSrCu_{3-x}(PO_4)_xO_y (x = 0.0,0.10,0.20), 150, 188 SmNi_{1-x}Co_{x}O_{3}, 150, 145 2D misfit compounds, in quantitation of interlayer charge transfer, 155, 1 exchange with nitrate in hydrotalcite, effect of Mg:Al ratio, 151, 272 Borazines polymers prepared from, structure, effect on crystallinity of boron ni- tride, 154, 137 Boron \alpha-AlB₁₂ crystal chemistry, 154, 168 strength and creep in, 154, 191 γ-AlB₁₂, crystal chemistry, 154, 168 Al₃BC₃, 300-K equation of state and high-pressure phase stability, 154, B₂, electronic energies and vibration frequencies, quasi-classical deter- mination, 154, 148 B₉₆ isomers, ab initio study: quasicrystals and nanotubes, 154, 269 BaMBO_3F_2 (M = Ga,Al), crystal structure, 155, 354 B₄₈Al₃C₂, interband transitions and optical phonons, 154, 75 coating of graphite for protection against oxidation, 154, 162 crystallinity, effect of molecular precursor structure, 154, 137 electronic energies and vibration frequencies, quasi-classical deter- mination, 154, 148 films prepared by MOCVD, 154, 101 nanotubes, structure and mechanisms of growth and formation, 154, 214 phase diagram, 154, 280 B_{12}N_{12},\,B_{24}N_{24},\,\text{and}\,\,B_{60}N_{60},\,\text{semiempirical} and molecular dynamics studies, 154, 214 BO, electronic energies and vibration frequencies, quasi-classical deter- mination, 154, 148 borocarbides Ln-M-B-C (Ln = rare earths, Y; M = Ni,Pd), chemical and super- conducting properties, 154, 114 R_5B_2C_5 (R = Y,Ce-Tm), structural, electronic, and magnetic proper- ties, 154, 286 boron carbides BC, electronic energies and vibration frequencies, quasi-classical de- termination, 154, 148 B₄C, strength and creep in, 154, 191 enriched in 10B, 11B, and 13C isotopes, IR-active phonons and struc- ture elements, 154, 79 lattice dynamics, effects of crystal geometries, 154, 20 sintering, 154, 194 structural defects, correlation with electronic properties, 154, 61 boron phosphide films preparation by photo- and thermal chemical vapor deposition pro- cesses, 154, 39 thermoelectric properties, 154, 26 borosilicates, crystallization and structural characteristics, 154, 312 B_{12}P_2 wafers, electrical and thermal properties, 154, 33 BPO₄ doped with Li, ionic distribution in, NMR study, 153, 282 B-Si thin film, preparation by pulsed laser deposition and properties, CeB₆ floating zone growth and high-temperature hardness, 154, 238 ``` interband transitions, IR-active phonons, and plasma vibrations, 154, RCo_4B (R = Y,Pr,Nd,Sm,Gd,Tb), magnetic properties, 154, 242 Co₇₇B₂₃ amorphous alloy, crystallization mechanism, 154, 145 ``` compounds of, microanalysis with nuclear microprobe, 154, 301 (Cr_{1-x}TM_x)_3B_4 (TM = Ti,V,Nb,Ta,Mo,W) large crystals, synthesis and analysis, 154, 45 crystals rich in, geometries of, effects on lattice dynamics, 154, 20 DyB₆, magnetic entropy, 154, 275 EuB₆, interband transitions, IR-active phonons, and plasma vibrations, 154, 87 Eu₃(BO₃)₂F₃, anionic disorder in, evidence from Eu³⁺ luminescence: comparison with Ba₂Eu(CO₃)₂F₃, 153, 270 Fe-doped, physical-mechanical characteristics, 154, 188 preparation by photo- and thermal chemical vapor deposition pro- cesses, 154, 39 thermoelectric properties, 154, 26 MGa_2B_2O_7 (M = Sr,Ba), crystal structures, 154, 598 GdB₆, magnetic entropy, 154, 275 Gd₂O₃-B₂O₃, thermal behavior and structural analysis, 154, 204 Hf-B-C system, phase equilibria, calculation by thermodynamic modeling, 154, 257 HoB₆, magnetic entropy, 154, 275 icosahedral solids rich in, structural defects, correlation with electronic properties, 154, 61 LaB₆ chemical vapor deposition, thermodynamic estimation, 154, 157 floating zone growth and high-temperature hardness, 154, 238 interband transitions, IR-active phonons, and plasma vibrations, 154, La₃BSi₂O₁₀, crystallization and structural characteristics, 154, 312 LaB₆-(Ti,Zr)B₂ alloys, eutectic crystallization, 154, 165 La₅Si₂BO₁₃, synthesis and neutron diffraction study, 155, 389 metal borides, solid state structures, molecular models of, 154, 110 metal hexaborides, interband transitions, IR-active phonons, and plasma vibrations, 154, 87 MgOs₃B₄, channel structure, 154, 232 Mo₂NiB₂ boride base cements with Cr and V additions, mechanical properties and structure, effects of Mo/B atomic ratio, 154, 263 Na_2M_2(BO_3)_2O (M = Al,Ga), crystal structure, comparison with other layered oxyborates and SiP2O7, 154, 344 Na₃[B₆O₉(VO₄)], synthesis and crystal structure, 150, 342 Na₂O-B₂O₃ glass system, phase separation in, NMR study, 149, 459 NbB₂, chemical vapor deposition, thermodynamic estimation, 154, NdB₆, floating zone growth and high-temperature hardness, 154, 238 R_2NiB₁₀ (R = Y,Ce-Nd,Sm,Gd-Ho), synthesis, crystal structure, and magnetic and electrical properties, 154, 246 PrB₆, floating zone growth and high-temperature hardness, 154, 238 quantitative electron probe microanalysis, 154, 177 rare-earth hexaborides, phonon and specific heat analyses, 154, 275 Rb₂[B₄O₅(OH)₄] · 3.6H₂O, crystal structure and thermal behavior, 149, α-rhombohedral, production by amorphous boron crystallization, 154, 199 β-rhombohedral high-purity, and carbon-doped, modulated photoconductivity, 154, high-purity, photoluminescence and steady-state interband photocon- ductivity, 154, 68 isotopically modified, phonon properties, 154, 296 metal-doped, thermoelectric properties, 154, 13 pure, and V-doped, modulated photocurrent measurements, 154, 307 structural defects, correlation with electronic properties, 154, 61 Sc₂AlB₆, crystal growth and structure, 154, 49 ScB₁₇C_{0.25}, single-crystal XRD and TEM study, 154, 130 ``` ScOs₃B₄, channel structure, 154, 232 sintering, 154, 194 $Sm_{0.8}B_6$, interband transitions, IR-active phonons, and plasma vibrations, 154, 87 SmB_6 floating zone growth and high-temperature hardness, **154**, 238 interband transitions, IR-active phonons, and plasma vibrations, **154**, 87 $SrAl_2B_2O_7$, **150**, 404 $SrMn_{1-y}(B,C)_yO_{3-\delta}$, order-disorder phenomena, **149**, 226 TaB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 TbB₆, magnetic entropy, **154**, 275 TbB₄₁Si_{1.2}, specific heat, **154**, 223 thin film, preparation and thermoelectric power, 154, 153 three-coordinate organoborons, linear and nonlinear optical properties, 154, 5 TiB₂ chemical and electrochemical behavior in cryolite-alumina melt and in molten aluminum, **154**, 107 chemical vapor deposition, thermodynamic estimation, 154, 157 $(Y,RE)Al_3(BO_3)_4$ solid solutions (RE = Nd,Gd,Ho,Yb,Lu), crystal growth and characterization, **154**, 317 YB₆, interband transitions, IR-active phonons, and plasma vibrations, 154, 87 YB₆₆, effect of transition metal doping, **154**, 54 YbB₆, interband transitions, IR-active phonons, and plasma vibrations, **154**, 87 YB₄₁Si₁₂, transport phenomena, **154**, 229 ZnO-B₂O₃ fluxes, effects on dieletric properties of BaTiO₃, **155**, 86 ZrB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 γ-Brass clusters isotypic to, in Mn₃Ga₅, 153, 398 Bromine Cd₅(PO₄)₃Br apatite, incommensurate modulation, **150**, 154 α - and β -[Cu₂Br(C₅H₃N₂O₂)₂(H₂O)], synthesis and characterization, **152.** 174 Hg₆Sb₄BiBr₇ and Hg₆Sb₅Br₇, built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, **154**, 350 Ni(NH₃)₂Br₂, preparation and crystal structures, 152, 381 PbBr₂, inert pair effects: crystal structure of SnBr₂, 149, 28 SnBr₂, crystal structure, 149, 28 Sr(OH)Br, hydroxide ion disorder in, 151, 267 Bronze $Ba_{1+x}V_8O_{21}$, with tunnel structure, hydrothermal synthesis and crystal structure, **150**, 330 Ce_xWO₃, preparation by thermal degradation of polyoxotungstates, **149**, 378 H_xMoO₃, CDW superstructures, 149, 75 hydrated lithium and sodium vanadium bronzes, synthesis, 149, 443 $K_{0.3}MoO_3$, interactions of sliding charge-density waves with phonons, 155, 105 ${ m Nb_7W_{10}O_{47}}$ tetragonal bronze-type phase, superstructure and twinning, 149, 428 Th_xWO_3 , preparation by thermal degradation of polyoxotung states, 149, 378 U_xWO_3 , preparation by thermal degradation of polyoxotung states, 149, 378 RE_xWO_3 (RE = La,Nd) synthesized under high pressure, X-ray diffraction and electron microscopy, **154**, 466 Building units design and scale chemistry, 152, 37 Butanediols intercalates with vanadyl and niobyl phosphates, preparation and characterization, **151**, 225 Cadmium $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), synthesis and structure, **149**, 384 $Ba_4Nd_2Cd_3Se_{10}$, synthesis and structure, **149**, 384 C Cd²⁺, systematic tuning of luminescent properties of self-activated ZnGa₂O₄ phosphors by substitution for Zn²⁺, **150**, 204 CdAl₂Se₄, zone center frequencies in tetragonal phase, 153, 317 CdCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, 149, 113 CdCr₂S₄ and CdCr₂Se₄ spinels, electronic band structure, **155**, 198 CdCu₃Ti₄O₁₂, dielectric constant, **151**, 323 (Cd_{1-x}Mn_x)Mn₂O₄, synthesis, stoichiometry, and electrical transport properties, 153, 231 $Cd_{1-\delta}Mn_2O_v$, crystal chemistry, Mn-K edge XAS study, **149**, 252 Cd(OH)Cl, synthesis, crystal structure, and relationship to brucite type, 151, 308 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236 Cd₅(PO₄)₃Br and Cd₅(PO₄)₃I apatites, incommensurate modulation, **150**, 154 CdSe cubic nanocrystals, room-temperature synthesis in aqueous solution, 151, 241 Ce₂Ni₂Cd, synthesis, structure refinement, and properties, **150**, 139 mesostructured 3D materials based on [Ge₄S₁₀]⁴⁻ and [Ge₄Se₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 seven-coordinated diaquasuccinatocadmium(II) bidimensional polymer, crystal structure and vibrational and thermal behavior, **153**, 1 Calcium BaCa_{0.393}Nb_{0.606}O_{2.91}, cation loss in aqueous media leading to amorphization at room temperature, **149**, 262 (1-x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related phases, electron diffraction and XRD studies, **149**, 218 $CaAl_{12}Si_4O_{27}$ high-pressure phase with Al_6O_{19} clusters, synthesis and structure, 153, 391 $\rm CaCu(HCOO)_4$ and $\rm Ca_2Cu(HCOO)_6$ crystals, temperature-dependent Raman study, 154, 338 $Ln_{1.85}^{3.85}Ca_{0.15}^{2+}CuO_4$ superconductors, true tolerance factor effects in, 155, 138 Ca_{4.78}Cu₆O_{11.60}, crystal structure, **151**, 170 Ca_{3.1}Cu_{0.9}RuO₆, synthesis, structural chemistry, and magnetic properties, **153**, 254 CaCu₃Ti₄O₁₂, dielectric constant, 151, 323 CaErPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, 150, 112 Ca₂Fe₂O₅, ¹¹⁹Sn dopant atoms in, hyperfine interactions and dynamic characteristics, 151, 313 CaIn₂O₄ phosphors activated by Pr, luminescence properties, **155**, 441 CaLuPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112 $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), structure, resistivity, and magnetic susceptibility. **152**, 474 Ln_{0.4}Ca_{0.6}MnO₃ (Ln = La,Pr,Nd,Sm), Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330 CaMnO₃, Mn site-doped, colossal magnetoresistance, 149, 203 $Ca_4Nb_2O_9 = 3 \cdot Ca(Ca_{1/3}Nb_{2/3})O_3$, perovskite-like polymorphs, octahedral tilting and cation ordering in, **150**, 43 CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483 CaO:Al₂O₃:Nb₂O₅ system, phase equilibria and dielectric properties, 155, 78 CaO-MgO and CaO-MnO solid solutions, mixing properties, semiempirical and ab initio calculations, 153, 357 - Ca_{9.75}[(PO₄)_{5.5}(CO₃)_{0.5}]CO₃, A-type carbonate apatite, structure analysis by single-crystal X-ray diffraction, **155**, 292 - M^{3+} Ca₄(PO₄)₃O (M^{3+} = Bi,La), synthesis and characterization, **149**, 133 [Ca₁₀(PO₄)₆(OH)₂] hydroxyapatite, site preference of rare earth elements in, **149**, 391 - Ca-Rh-O system, chemical potential and Gibbs energy of formation measurements, solid state cells with buffer electrodes for, 150, 213 - Ca₆Sm₂Na₂(PO₄)₆F₂, crystal structure and polarized Raman spectra, **149**, 308 - $\text{Ca}_2\text{Ta}_2\text{O}_7\text{-Sm}_2\text{Ti}_2\text{O}_7$ system, syntheses in, structures, and crystal chemistry, **150**, 167 - CaTmPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112 - CaV₄O₉, spin exchange interactions of, spin dimer analysis, 153, 263 - CaYbPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112 - Ce_{1-x}CaVO_{4-0.5x} with zircon-type structure, preparation by solid-state reaction in air, **153**, 174 - in chlorapatite, effects on topotaxial replacement by hydroxyapatite under hydrothermal conditions, **154**, 569 - K₂CaNaTa₃O₁₀ Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46 - KCa₂Nb₃O₁₀ layered perovskite, crystal structure, 151, 40 - K₂Ca₂Ta₂TiO₁₀·0.8H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46 - (La_{1-x}Ca_x)CrO₃, chemical and thermal expansion, 149, 320 - La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, structure and magnetic properties, **152**, 503 - NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}O_{14- δ}, defect chemistry and electrical properties, **155**, 216 - $Ni_{1-x}O/CaO$, paracrystal formation upon interdiffusion, **152**, 421 phosphate formation, effects of Ni, **151**, 163 - Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru, micronanostructures, correlation with magnetic transitions, 155, 15 - Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, **153**, 106 - $\{[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]\}_n$, 151, 286 - Calcium fluorapatite - conversion into calcium hydroxyapatite under alkaline hydrothermal conditions, 151, 65 - Calcium phosphate - formation, effects of Ni, 151, 163 - Calorimetry - Sr(OH)Br, analysis of hydroxide ion disorder, 151, 267 - α -Ti(HPO₄)₂·H₂O with intercalated heterocyclic amines, **154**, 557 Carbon - Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure of molecular and extended complexes, **152**, 247 - Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, structures and magnetic properties. 152, 159 - Al_3BC_3 , 300-K equation of state and high-pressure phase stability, 154, 254 - alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271 - Ba₂Eu(CO₃)₂F₃, optical behavior, comparison with Eu₃(BO₃)₂F₃, **153**, - B₄₈Al₃C₂, interband transitions and optical phonons, **154**, 75 - N-benzyl piperidinium dihydrogenmonophosphate, crystal structure and phase transitions, **155**, 298 - borocarbides - Ln-M-B-C (Ln = rare earths, Y; M = Ni,Pd), chemical and superconducting properties, **154**, 114 - $R_5B_2C_5$ (R=Y,Ce-Tm), structural, electronic, and magnetic properties, **154**, 286 - boron carbides - BC, electronic energies and vibration frequencies, quasi-classical determination, 154, 148 - B₄C, strength and creep in, 154, 191 - enriched in ¹⁰B, ¹¹B, and ¹³C isotopes, IR-active phonons and structure elements, **154**, 79 - lattice dynamics, effects of crystal geometries, 154, 20 - structural defects, correlation with electronic properties, 154, 61 - CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent Raman study, **154**, 338 - Ca_{9,75}[(PO₄)_{5,5}(CO₃)_{0,5}]CO₃, A-type carbonate apatite, structure analysis by single-crystal X-ray diffraction, **155**, 292 - C(CH₃)₄, system with CCl₄, thermodynamics, **154**, 390 - CCl₄, system with neopentane, thermodynamics, 154, 390 - $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236 - CH₄, mixture with H₂, temperature-programmed reaction with, in synthesis of tungsten carbides, **154**, 412 - (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180 - (CH₃NH₃)₃Bi₂Cl₉, low-temperature phase transition and structural relationships, **155**, 286 - $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, hydrothermal synthesis and crystal structure, **155**, 409 - (C₄H₁₂N₂)(H₃O)[(VOPO₄)₄(H₂O)H₂PO₄]·3H₂O, hydrothermal synthesis and characterization, **154**, 514 - (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460 - (C₄H₁₂N₂)[(VO)(VO₂)₂(H₂O)(PO₄)₂], hydrothermal synthesis and characterization, **154**, 514 - [C₂N₂H₁₀]₂Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507 - $[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}$, isolation and transformation to $[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}$, **150**, 417 - [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280 - Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143 - coordination polymers with 4,4'-dipyridyldisulfide, synthesis and structure, **152**, 113 - α and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174 - [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141 - 1,2-dihydro-N-aryl-4,6-dimethylpyrimidin-2-ones, C-H···O and C-H···N networks in, 152, 221 - (Fe(CN)₆)³⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 - Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, **152**, 229 graphite - intercalated with TaCl₆⁻ and TaOCl₃, structural analysis with molecular simulations, **149**, 68 - oxidation protection by BN coatings, 154, 162 - graphite monofluoride, structure and properties, analysis with 3D cyclic cluster approach, **150**, 286 - Hf-B-C system, phase equilibria, calculation by thermodynamic modeling, 154, 257 - (H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, **152**, 229 hydrogen bond-directed hexagonal frameworks based on 1,3,5-benzenet-ricarboxylate, **152**, 261 - $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O$ ($M = K, NH_4$), crystal structure and thermal behavior, **150**, 81 - metal carboxylates, microporous materials, synthesis and gas occlusion properties, **152**, 120 methylamines, intercalation into TiS2, 155, 326 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122 Na(O₂CC≡CH), structure and γ-ray-induced solid-state polymerization: effect of bilayer formation on solid-state reactivity, **152**, 99 [N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324 NCS⁻ counterion, role in anomalous spin crossover of mechanically strained Fe(II)-1,10-phenanthroline complexes, **153**, 82 [NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, **151**, 145 $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(PO_4)_2]$ and $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(HPO_4)_3]$, synthesis and crystal structure, **155**, 62 CH_2NH_3][$CO_2(HPO_4)_3$], synthesis and crystal structure, 155, 62 [$NH_3(CH_2)_3NH_3$]_{0.5}[$M(OH)AsO_4$] (M = Ga,Fe), synthesis and characterization, 155, 37 NH₂(CH₂)₄NH₂V₄O₉, spin exchange interactions of, spin dimer analysis, **153**, 263 [Pb₆O₄](OH)(NO₃)(CO₃), crystal structure, 153, 365 polymeric Ag(I)-hexamethylenetetramine complexes, structure and topological diversity, **152**, 211 polymorphous one-dimensional tetrapyridylporphyrin coordination polymers structurally mimicking aryl stacking interactions, **152**, 253 $(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se; M = Mn,Ni), synthesis and structure,**153**, 195 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M=Mn,Ni), synthesis and structure, **153**, 195 β -rhombohedral boron doped with, modulated photoconductivity, **154**, 93 ScB₁₇C_{0.25}, single-crystal XRD and TEM study, **154**, 130 SrC₂, synthesis and crystal structure, 151, 111 $Sr_4Fe_2O_6CO_3$, synthesis, crystal structure, and magnetic order, **152**, 374 $SrMn_{1-y}(B,C)_yO_{3-\delta}$, order–disorder phenomena, **149**, 226 Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and polyphenolic 2D motifs, synthesis and characterization, **152**, 130 (V^{IV}O)₂(H₂O){O₃P-(CH₂)₃-PO₃}·2H₂O, hydrothermal synthesis, structure, and magnetic behavior, **155**, 238 W carbides, synthesis by temperature programmed reaction with CH₄-H₂ mixtures, **154**, 412 zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen), as structure directors for, **152**, 286 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107 $Zn_4(PO_4)_2(HPO_4)_2\cdot 0.5(C_{10}H_{28}N_4)\cdot 2H_2O,$ hydrothermal synthesis and crystal structure, 154, 368 Carbonate apatite A-type, structure analysis by single-crystal X-ray diffraction, **155**, 292 Carbon tetrachloride system with neopentane, thermodynamics, 154, 390 Carburization WO₃ by CH₄-H₂ mixture, **154**, 412 Cation anti-site disorder rare earth oxide pyrochlores, 153, 16 Cation disorder in three-layer Aurivillius phases, 153, 66 Cation doping effects on conductivity of Na₂SO₄, 155, 154 Cation loss from $BaCa_{0.393}Nb_{0.606}O_{2.91}$ in aqueous media, resulting amorphization at room temperature, **149**, 262 Cation ordering La and Sr ions on A cationic sites in $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La, Pr, Nd, Sm, Eu, Gd), 150, 1 in perovskite-like $Ca_4Nb_2O_9=3\cdot Ca(Ca_{1/3}Nb_{2/3})O_3$ polymorphs, 150, 43 Cavity-containing materials resorcin[4]arenes based on, design strategies, 152, 199 Ceramics $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$, sintering and conductivity, effect of particle size, **155**, 273 ZnO, sintered, redox reaction of Pr₂O₃ in, **149**, 349 Cerium BaCe₂MnS₅, crystal structure and magnetic properties, 153, 330 $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq 1$) mixed perovskites, high-pressure Raman study, **149**, 298 Ce³⁺, BaLiF₃ doped with, optical spectroscopy properties and charge compensation, 150, 178 CeB₆ floating zone growth and high-temperature hardness, **154**, 238 interband transitions, IR-active phonons, and plasma vibrations, **154**, 87 $Ce_{1-y}Bi_{y}VO_{4}$ with zircon-type structure, preparation by solid-state reaction in air, 153, 174 Ce₅Mo₃₂O₅₄, with *trans*-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, synthesis, structure, and properties, **152**, 403 $Ce_{1-x}Nd_xTiO_3$, magnetic properties, 153, 145 Ce₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246 Ce₂Ni₂Cd, synthesis, structure refinement, and properties, **150**, 139 ${ m CeO}_{1.765}$ and ${ m CeO}_{1.800}$, phase transitions, single-crystal neutron diffraction studies. **153**, 218 CeO₂ nanocrystals, X-ray absorption spectroscopy, 149, 408 CePdGe, order of Pd and Ge atoms in, 154, 329 $Ce_{1-x}Sm_xTiO_3$ (0 $\le x \le 1$) solid solutions, magnetic properties, 153, 145 $\text{Ce}_2 T_2 \text{Sn } (T = \text{Ni}, \text{Pd})$, band magnetism, local spin density functional calculations, **149**, 449 $CeVO_4$ and $Ce_{1-x}MVO_{4-0.5x}$ (M = Ca,Sr,Pb) with zircon-type structure, preparation by solid-state reaction in air, 153, 174 Ce_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates, 149, 378 t'_{meta}-(Ce_{0.5}Zr_{0.5})O₂ phase prepared by reduction and successive oxidation of t' phase, electrical conductivity, **151**, 253 fluorite-type oxides containing, lattice oxygen transfer in, 155, 129 (Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z, 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 Cesium Cs₇Au₅O₂, synthesis, structure, and properties, 155, 29 Cs₃Bi₅Cu₂S₁₀, structure and conductivity, **155**, 243 Cs₂CoCl₄, high-pressure studies by X-ray diffraction, 153, 212 CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60 Cs₂CuCl₄, high-pressure studies by X-ray diffraction, 153, 212 $Cs_2CuP_3S_9$, chiral compound with chiral screw helices, preparation, structure, and characterization, 151, 326 Cs₃Hg₂₀ and Cs₅Hg₁₉, synthesis and structure, **149**, 419 Cs₂KMnF₆, phase transition crystal structures of low- and high-temperature modifications, 150, at high pressure, 153, 248 Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, 153, 185 $Cs_8Na_{16}Ge_{136}$ and $Cs_8Na_{16}Si_{136}$ clathrates, synthesis and characterization, **153**, 92 Cs₂V₄O₉, spin exchange interactions of, spin dimer analysis, **153**, 263 Chalcogenides Ag_8SnE_6 (E = S,Se), synthesis and characterization, **149**, 338 complex, local environment in, X-ray absorption spectra as fingerprint of, 150, 363 KMQ_2 (M = Al,Ga; Q = Se,Te), with stacking faults, synthesis and structure, **149**, 242 mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 Charge compensation BaLiF₃ doped with Ce³⁺, 150, 178 Charge density wave H_xMoO₃ bronze superstructures, 149, 75 NiTa₂Se₇ with incommensurately modulated low-temperature structure, **153**, 152 sliding, interactions with phonons, 155, 105 Charge disproportionation $Pr_{1-x}Sr_xFeO_{3-\delta}$, **150**, 233 Charge distribution analysis $LuFeO_3(ZnO)_m$: effect of coordination polyhedra shape on cation distribution, **150**, 96 Charge ordering $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, 153, 140 Chemical expansion $(La_{1-x}Ca_x)CrO_3$, **149**, 320 Chemical potential Ca-Rh-O system, measurement, solid state cells with buffer electrodes for, 150, 213 Chemical vapor deposition borides, thermodynamic estimation, 154, 157 metalorganic, BN films prepared by, 154, 101 photo- and thermal, preparation of boron and boron phosphide films, **154.** 39 Chevrel phases $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural studies, 155, 250 Chiral solids Cs₂CuP₃S₉, with chiral screw helices, preparation, structure, and characterization, **151**, 326 formation via molecular building block approach, 152, 68 Chlorapatites metal ions in, effects on topotaxial replacement by hydroxyapatite under hydrothermal conditions, **154**, 569 Chlorine BiSeO₃Cl, crystal structure and dielectric and nonlinear optical properties, **149**, 236 CCl₄, system with neopentane, thermodynamics, 154, 390 Cd(OH)Cl, synthesis, crystal structure, and relationship to brucite type, 151, 308 $(CH_3NH_3)_3Bi_2Cl_9$, low-temperature phase transition and structural relationships, 155, 286 Cs₂CoCl₄, high-pressure studies by X-ray diffraction, 153, 212 CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60 Cs₂CuCl₄, high-pressure studies by X-ray diffraction, 153, 212 $\alpha\text{-}$ and $\beta\text{-}[Cu_2Cl(C_5H_3N_2O_2)_2(H_2O)],$ synthesis and characterization, 152, 174 Cu(OH)Cl, synthesis and crystal structure, relationship to brucite type, 151, 308 divalent transition metal chlorides, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113 Hg₆As₄BiCl₇ built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, **154**, 350 Ni(NH₃)₂Cl₂, preparation and crystal structures, 152, 381 PbCl₂, inert pair effects: crystal structure of SnBr₂, 149, 28 Pb₇F₁₂Cl₂, disordered modification of, synthesis and structure, **149**, 56 SnCl₂, inert pair effects: crystal structure of SnBr₂, **149**, 28 TaCl₆ and TaOCl₃, compound with intercalated graphite, structural analysis with molecular simulations, **149**, 68 {V₁₈O₄₂(ClO₄)}, extended solids composed of, synthesis, structure, and physicochemical properties, **152**, 105 [Zn-Al-Cl] layered double hydroxide, thermally treated, X-ray diffraction pattern simulation, 152, 568 Chromate Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 Chromaticity diagram CaIn2O4 phosphors activated by Pr, 155, 441 ZnGa₂O₄ self-activated phosphors with Cd²⁺ substitution for Zn²⁺, **150,** 204 Chromium Bi₁₄CrO₂₄, crystal structure, **149**, 209 CdCr₂S₄ and CdCr₂Se₄ spinels, electronic band structure, 155, 198 Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, 152, 526 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, synthesis and analysis, **154**, 45 Cr ions in rutile TiO₂, redox properties, XRD and EPR study, 152, 412 $(Cr_{1-x}Ni_x)_3Te_4$ with pseudo-NiAs-type structure, magnetic properties, **154**, 356 (CrO₄)²⁻ and (Cr₂O₇)²⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 (Hg,Cr)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488 intercalation compounds of anionic oxalato complexes with layered double hydroxides. 153, 301 (La_{1-x}Ca_x)CrO₃, chemical and thermal expansion, **149**, 320 LaCrO₃, structural phase transition, neutron powder diffraction study, 154, 524 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, 155, 280 La_{0.5}Pr_{0.5}CrO₃, magnetization reversal, **155**, 447 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, structural characterization, 155, Mo_2NiB_2 boride base cements with Cr additions, mechanical properties and structure, effects of Mo/B atomic ratio, 154, 263 Pb₅Al_{2.96}Cr_{0.04}F₁₉, ferroelastic phase, crystal structure at 300 K, **155**, β -rhombohedral boron doped with, thermoelectric properties, **154**, 13 Sr₂CrMoO₆ double perovskite, magnetoresistance, **155**, 233 Sr_{4.5}Cr_{2.5}O₉, magnetic properties, **154**, 375 Circular dichroism spectroscopy magnetic, analysis of magnetic order in $Pr_{1-x}Ba_xCoO_3$ perovskite, **152**, 577 Clathrates $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x = 2) with p-type thermoelectric cage structure, synthesis and characterization, 151, 61 $Ba_6Ge_{25-x},\ Ba_6Ge_{23}Sn_2,$ and $Ba_6Ge_{22}In_3,$ structure and thermoelectric properties, 153, 321 Ba₂₄Ge₁₀₀, preparation and structure, **151**, 117 group 14 with alkali metals, synthesis and characterization, **153**, 92 potential as thermoelectric materials, **149**, 455 CMR effect, see Colossal magnetoresistance Cobalt Ba₂CoNbO₆ perovskite, magnetic transition in, **151**, 294 Ba₈Co₇O₂₁, synthesis and structure, **151**, 77 $BaIr_{1-x}Co_xO_{3-\delta}$ (x = 0.5,0.7,0.8) perovskites, structural chemistry and electronic properties, **152**, 361 (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180 RCo_4B (R = Y,Pr,Nd,Sm,Gd,Tb), magnetic properties, 154, 242 Co₇₇B₂₃ amorphous alloy, crystallization mechanism, 154, 145 [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280 CoCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113 Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, 152, 526 Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143 Co₂P, solvothermal synthesis, 149, 88 Co_{0.844}Se nanocrystals, synthesis in nonaqueous solvent, **152**, 537 Cs₂CoCl₄, high-pressure studies by X-ray diffraction, 153, 212 CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60 Dy₆CoTe₂, synthesis, structure, and bonding, 155, 9 LaCoO₃-LaMnO₃-BaCoO₂-BaMnO₃ system, phase equilibria, 153, 205 LiFe_{1-x}Co_xO₂ ($0 \le x \le 1$), Co in, effect on magnetic properties, **154**, 451 mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes. **152.** 21 $Na_4Co_3H_2(PO_4)_4 \cdot 8H_2O$, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292 Nd₄Co₃O_{10+δ}, crystal structure and properties, **151**, 46 NiCo₂O₄, XRD, XANES, EXAFS, and XPS study, 153, 74 Pr_{1-x}Ba_xCoO₃ perovskite, magnetic order, magnetic circular dichroism spectroscopic study, 152, 577 Pr_2O_3 -Co- Co_2O_3 system, thermogravimetric study at 1100 and 1150°C, **151**, 12 β -rhombohedral boron doped with, thermoelectric properties, **154**, 13 SmNi_{1-x}Co_xO₃, structure, relationship to physical properties, **150**, 145 $TICo_{2-x}Cu_xSe_2$ ($x \sim 1$) system, incommensurate Cu/Co ordering in, 151, 260 zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions $R_4\mathrm{N}^+$ ($R=n\mathrm{Pr},n\mathrm{Bu},n\mathrm{Pen}$) as structure directors for, **152**, 286 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107 Color CrVI-doped Bi₂O₃ phases, 149, 209 Colossal magnetoresistance CaMnO₃ doped at Mn sites, 149, 203 origin in manganites, 155, 116 Composite electrolytes Na₂SO₄-Al₂O₃, ionic conductivity, mechanism and role of preparatory parameters, **153**, 287 Compressibility $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq$ 1) mixed perovskites, high-pressure Raman study, **149**, 298 Ba₄Ru₃O₁₀, **149**, 137 BN, 154, 280 Conductivity, see also specific type Bi_{0.775}La_{0.225}O_{1.5} of rhombohedral Bi-Sr-O type, optimization by polycationic substitutions for La, 149, 341 Na₂SO₄, enhancement, review and current developments, **155**, 154 Coordination polymers Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure, **152**, 247 Ag(I)-hexamethylenetetramine complexes, self-assembly and supramolecular interactions, 152, 211 alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236 Cu(I)-Cu(II), two- and three-dimensional, synthesis and characterization, 152, 174 with 4,4'-dipyridyldisulfide, synthesis and structure, 152, 113 inorganic-organic, generated from rigid or flexible bidentate ligands and Co(NCS)₂·xH₂O, **155**, 143 ladder-like Cu(II) polymers, self-assembly, structures, and magnetic properties, 152, 183 metal-ion, porphyrin-based microporous materials, 152, 87 neutral molecular railroad, incorporating polycyclic aromatic molecules, synthesis and crystal structure, **152**, 280 pillared 3D Mn(II) network with rectangular channels, synthesis, X-ray structure, and magnetic properties, **152**, 152 sodium propynoate polymers, formation induced by gamma radiation and structure, **152**, 99 tetrapyridylporphyrin, polymorphous one-dimensional, structural mimicry of aryl stacking interactions, **152**, 253 Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and polyphenolic 2D motifs, synthesis and characterization, **152**, 130 Copper alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271 AlSr₂YCu₂O₇, crystal growth and structure, 149, 256 $Ba_4Er_2Cu_7O_{15-\delta}$, structural effects of Au and Al incorporation, **150**, 228 $A_3Bi_5Cu_2S_{10}$ (A = Rb,Cs), structure and conductivity, **155**, 243 CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent Raman study, **154**, 338 Ca_{4.78}Cu₆O_{11.60}, crystal structure, **151**, 170 Ca_{3.1}Cu_{0.9}RuO₆, synthesis, structural chemistry, and magnetic properties, 153, 254 Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, Cs₂CuCl₄, high-pressure studies by X-ray diffraction, 153, 212 Cs₂CuP₃S₉, chiral compound with chiral screw helices, preparation, structure, and characterization, **151**, 326 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174 CuCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113 Cu(I)-Cu(II) coordination polymers, two- and three-dimensional, synthesis and characterization, 152, 174 Cu(II) dicarboxylates, microporous materials, synthesis and gas occlusion properties, 152, 120 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, synthesis and structure, **150**, 159 Cu₂FeSn₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363 Cu₂FeTi₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363 Cu₂Gd_{2/3}S₂, crystal structure: interlayer short-range order of Gd vacancies, 152, 332 CuInO₂ delafossite-type oxide, synthesis, 151, 16 Cu(II) ladder-like coordination polymers, self-assembly, structures, and magnetic properties, 152, 183 Cu_{0.5}Mn_{0.25}Zr₂(PO₄)₃ Nasicon-type phosphate, structure and luminescence, **152**, 453 Cu₄Nb₅Si₄, bonding analysis, 154, 384 $Ln_{1.85}^{3.4}M_{0.15}^{2+}$ CuO₄ superconductors, true tolerance factor effects in, 155, Cu(OH)Cl, synthesis and crystal structure, relationship to brucite type, 151, 308 Cu₃P, solvothermal synthesis, 149, 88 $(RE_{m+n})(Cu_2P_3)_m(Cu_4P_2)_n$, relationship to other rhombohedral rare earth copper phosphides, **151**, 150 Cu-phenanthroline complexes, functionalized MCM-41 containing, synthesis and characterization, **152**, 447 Cu₂SnS₃ nanocrystals, synthesis, characterization, and properties, **153**, 170 Cu_{2-x} Te, preparation by microwave heating, 154, 530 ACu₃Ti₃FeO₁₂, dielectric constants, **151**, 323 ACu₃Ti₄O₁₂, dielectric constants, **151**, 323 [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies, **150**, 188 GdCuAs₂, symmetry-breaking transitions through GdCuAs_{1.15}P_{0.85} to GdCuP_{2.20}, **155**, 259 (Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z, 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 $\text{Ho}_2\text{Cu}_{6-x}\text{P}_{5-y}$, crystal structure and $(RE_{m+n})(\text{Cu}_2\text{P}_3)_m(\text{Cu}_4\text{P}_2)_n$ relationship to other rhombohedral rare earth copper phosphides, **151**, 150 intercalation compounds of anionic oxalato complexes with layered double hydroxides, **153**, 301 KBi₂CuS₄, structure and conductivity, 155, 243 KCuF₃ and K₂CuF₄, extended magnetic solids, spin exchange interactions in, 151, 96 LaBaCuGaO₅, phase transition induced by high pressure, **155**, 372 La₂CuO₄, extended magnetic solids, spin exchange interactions in, **151**, $La_5Cu_6O_4S_7$, synthesis, structure, electrical conductivity, and band structure, 155, 366 $La_{2-x}Nd_xCuO_4$ (0.6 $\leq x \leq$ 2), pressure-induced phase transitions, **151**, $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, synthesis and crystal structure, **149**, 189 $\mathrm{Nd_2CuO_4}$, extended magnetic solids, spin exchange interactions in, 151, 96 $NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11-\delta}$ and $NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}$ $O_{14-\delta}$, defect chemistry and electrical properties, **155**, 216 Ni_{1-x}Cu_xFeAlO₄, Mössbauer effect study, **149**, 434 Pr₂CuO₄, pressure-induced phase transitions, 151, 231 $RbLn_2CuSe_4$ (Ln = Sm,Gd,Dy), synthesis and structures, 151, 317 $Rb_{1.5}Ln_2Cu_{2.5}Se_5$ (Ln = Gd,Dy), synthesis and structure, **151**, 317 $\rm Sr_2CuMnO_3S$ and $\rm Sr_4Cu_2Mn_3O_{7.5}\it Q_2$ (Q = S,Se), synthesis and structure, 153, 26 SrO-Ho₂O₃-CuO_x system, phase relations, **149**, 333 $TICo_{2-x}Cu_xSe_2$ ($x \sim 1$) system, incommensurate Cu/Co ordering in, 151, 260 Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, **153**, 106 Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO₃, superstructure derived from, X-ray and neutronpowder diffraction, **155**, 22 $YBa_2Cu_4O_8$ superconductor, HRTEM surface profile imaging, 149, 327 Copper(II) terephthalate microporous materials, synthesis and gas occlusion properties, **152**, 120 Counterions NCS⁻ and PF₆, role in anomalous spin crossover of mechanically strained Fe(II)–1,10-phenanthroline complexes, **153**, 82 Covalent-metallic bonding conversion β -rhombohedral boron doped with metal, **154**, 13 Cryolite cryolite-alumina melt, TiB₂ in, chemical and electrochemical behavior, **154**, 107 Crystal chemistry α -AlB₁₂ and γ -AlB₁₂, **154**, 168 Ca₂Ta₂O₇-Sm₂Ti₂O₇ system polytypes, **150**, 167 $Cd_{1-\delta}Mn_2O_y$, Mn-K edge XAS study, **149**, 252 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, **155**, 280 oxygen/fluorine ordering in rutile-type FeOF, 155, 359 $\mathrm{Sm^{2+}}$ in $\mathrm{SmSO_4}$ and solid solutions of $M_{1-x}\mathrm{Sm_xSO_4}$ ($M=\mathrm{Ba,Sr}$), 154, 535 Crystal growth AlSr₂YCu₂O₇, **149**, 256 BaBi₃O_{5.5}, **152**, 435 complex perovskites, mechanical activation, 154, 321 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, **154**, 45 organic supramolecular materials, polarity formation in, **152**, 49 Sc₂AlB₆, **154**, 49 UNi_{1.9}Sn single crystals, **149**, 120 $(VO)_2P_2O_7$ at 3 GPa, **153**, 124 $(Y,RE)Al_3(BO_3)_4$ solid solutions (RE = Nd,Gd,Ho,Yb,Lu), 154, 317 Crystallinity BN, effect of molecular precursor structure, 154, 137 Crystallization amorphous boron: production of α -rhombohedral boron, **154**, 199 borosilicates, 154, 312 Co₇₇B₂₃ amorphous alloy, mechanism, **154**, 145 eutectic, LaB₆-(Ti,Zr)B₂ alloys, 154, 165 Crystal structure Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, molecular and extended complexes, **152**, 247 $Ag_2NbTi_3P_6S_{25}$, 153, 55 Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, 152, 159 AgTi₂(PS₄)₃, 153, 55 AlSr₂YCu₂O₇, 149, 256 BaBi₃O_{5,5}, **152**, 435 $BaMBO_3F_2$ (M = Ga,Al), **155**, 354 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), **149**, 384 Ba₂CoNbO₆ perovskite, 151, 294 Ba₈Co₇O₂₁, 151, 77 $Ba_4Er_2Cu_7O_{15-\delta}$, structural effects of Au and Al incorporation, **150**, 228 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2), p-type thermoelectric cage structure, $Ga_{16}(Gaso)_x Ge_{30-2x}$ (x=2), p-type thermoelectric cage structing 151, 61 Ba₆Ge_{25-x}, **153**, 321 Ba₂₄Ge₁₀₀, **151**, 117 Ba₆Ge₂₂In₃, **153**, 321 Ba₆Ge₂₃Sn₂, **153**, 321 $BaHf_{1-x}Zr_x(PO_4)_2$ emitting ultraviolet under X-ray excitation, **155**, 229 BaIr_{1-x}Co_xO_{3- δ} perovskites (x = 0.5,0.7,0.8), **152**, 361 BaLaMRuO₆ (M = Mg,Zn), **150**, 383 $BaLn_2MnS_5$ (*Ln* = La,Ce,Pr), **153**, 330 Ba₄Nd₂Cd₃Se₁₀, **149**, 384 BaRuO₃, derivation from bond valence analysis, 151, 245 Ba₄Ru₃O₁₀, **149**, 137 Ba₃SiI₂, **152**, 460 BaSm₄(SiO₄)₃Se, 155, 433 Ba_{1+x}V₈O₂₁ bronze with tunnel structure, **150**, 330 $Ba_6[V_{10}O_{30}(H_2O)] \cdot 2.5H_2O$ with unusual arrangement of V^{IV} -O polyhedra, **151**, 130 Ba₂YbTaO₆, ordered perovskite structure, 150, 31 N-benzyl piperidinium dihydrogenmonophosphate, 155, 298 Bi₁₄CrO₂₄, **149**, 209 $A_3 \text{Bi}_5 \text{Cu}_2 \text{S}_{10} \ (A = \text{Rb,Cs}), 155, 243$ BiMg₂VO₆, variable-temperature X-ray diffraction study, **149**, 143 Bi₂Nd₄O₉ monoclinic phase, **153**, 30 BiSeO₃Cl, 149, 236 1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi–Sr ordering, **151**, 210 BiZn₂PO₆, 153, 48 boron-rich crystal geometry, effect on lattice dynamics, 154, 20 borosilicates, 154, 312 CaAl₁₂Si₄O₂₇ high-pressure phase with Al₆O₁₉ clusters, **153**, 391 KMQ_2 (M = Al,Ga; Q = Se,Te) chalcogenides with stacking faults, 149, Ca_{4.78}Cu₆O_{11.60}, **151**, 170 Ca_{3.1}Cu_{0.9}RuO₆, 153, 254 KBi₂CuS₄, **155**, 243 KCa₂Nb₃O₁₀ layered perovskite, 151, 40 CaErPt₃Sn₅, Yb₂Pt₃Sn₅-type structure, **150**, 112 CaLuPt₃Sn₅, Yb₂Pt₃Sn₅-type structure, **150**, 112 K₃Hg₁₁, **149**, 419 CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, **154**, 483 carbonate apatite with A-site substitutions, X-ray diffraction study, 155, La₃Al_{0.44}Si_{0.93}S₇, **155**, 433 Ca₆Sm₂Na₂(PO₄)₆F₂, 149, 308 La₅Cu₆O₄S₇, 155, 366 Ca₂Ta₂O₇-Sm₂Ti₂O₇ system polytypes, **150**, 167 CaTmPt₃Sn₅, Yb₂Pt₃Sn₅-type structure, **150**, 112 $La_{\sim 10.8}Nb_5O_{20}S_{10}$, 152, 348 CaYbPt₃Sn₅, Yb₂Pt₃Sn₅-type structure, **150**, 112 La₅Re₃MnO₁₆, **151**, 31 Cd(OH)Cl, 151, 308 La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈, **155**, 189 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], **152**, 236 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, **149**, 189 Cd₅(PO₄)₃Br and Cd₅(PO₄)₃I, incommensurate modulation, 150, 154 Ce2Ni2Cd, 150, 139 (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂ one-dimensional cobalt phosphate, 153, metry, 151, 139 (CH₃NH₃)₃Bi₂Cl₉ at low temperature, 155, 286 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, **155**, 409 LaTe₂, **149**, 155 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, 154, 514 LaVO₄, 152, 486 $(C_2H_{10}N_2)[Ni(H_2O)_6](HPO_4)_2$, 154, 460 LaV₃O₉, 152, 486 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, 154, 514 LiH₅TeO₆, 150, 410 $[C_2N_2H_{10}]_2Fe_5F_4(PO_4)(HPO_4)_6$, 154, 507 RCo_4B (R = Y,Pr,Nd,Sm,Gd,Tb), **154**, 242 [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, 152, 280 coordination polymers with 4,4'-dipyridyldisulfide, 152, 113 Na_{0.5}Pb_{1.75}GeS₄, **153**, 158 Cs₇Au₅O₂, 155, 29 Cs₂CuP₃S₉, chiral compound with chiral screw helices, 151, 326 β -LiVOAsO₄, **150**, 250 Cs₅Hg₁₉, **149**, 419 MgOs₃B₄, channel structure, 154, 232 Cs₂KMnF₆, low- and high-temperature modifications, 150, 399 Cs₃Mg₂P₆O₁₇N, **153**, 185 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), **152**, 174 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, 150, 159 Cu₂Gd_{2/3}S₂, interlayer short-range order of Gd vacancies, 152, 332 CuInO₂ delafossite-type oxide, **151**, 16 Cu(II) ladder-like coordination polymers, 152, 183 ates and SiP₂O₇, 154, 344 $Cu_{0.5}^{I}Mn_{0.25}^{II}Zr_{2}(PO_{4})_{3}$ Nasicon-type phosphate, 152, 453 $Na_3[B_6O_9(VO_4)]$, 150, 342 Na₄Co₃H₂(PO₄)₄·8H₂O, **149**, 292 Cu(OH)Cl, 151, 308 [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, **152**, 141 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, 151, 122 1,2-dihydro-N-aryl-4,6-dimethylpyrimidin-2-ones: C-H···O and C-H···N Na_{3.64}Mg_{2.18}(P₂O₇)₂, **152**, 323 networks, 152, 221 N,N'-dimethylpiperazinium(2 +) selenate dihydrate, 150, 305 Na_{3.64}Ni_{2.18}(P₂O₇)₂, **152**, 323 Eu₁₆Bi₁₁, **155**, 168 Eu₁₆Sb₁₁, **155**, 168 Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 EuSn₃Sb₄ and related Zintl phases, 150, 371 extended solids composed of transition metal oxide clusters, 152, 105 Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 FeZn₁₀ and Fe₁₃Zn₃₉, 151, 85 NaSb₃O₂(PO₄)₂, 151, 21 $MGa_2B_2O_7$ (M = Sr,Ba), **154**, 598 GaPO₄, structural phase transformations, 149, 180 Na₂ZnP₂O₇, **152**, 466 GdCuAs₂, GdCuAs_{1.15}P_{0.85}, and GdCuP_{2.20}, 155, 259 $Nb_2N_{0.88}O_{0.12}$, 150, 36 $GdNi_3X_2$ (X = Al,Ga,Sn), relationship to synthesis conditions, 150, 62 M₅Ge₄ compounds in Ge-Ta-Zr system, relationship to composition, $Nd_4Co_3O_{10+\delta}$, **151**, 46 **150,** 347 $Nd_4Ni_3O_{10-\delta}$, **151**, 46 GeSe₂ three-dimensional crystals, transformations at high pressures and Nd₁₆Ti₅S₁₇O₁₇, **152**, 554 temperatures, 150, 121 A_3 Hg₂₀ (A =Rb,Cs) and A_7 Hg₃₁ (A =K,Rb), **149**, 419 CH_2NH_3 [$Co_2(HPO_4)_3$], 155, 62 Hg₆As₄BiCl₇, Hg₆Sb₄BiBr₇, and Hg₆Sb₅Br₇ built of polycationic mercury-pnictide framework with trapped anions, 154, 350 $Hg_3Se_2I_2$ and $Hg_3S_2I_2$, **151**, 73 $LnNiIn_2$ (Ln = Pr,Nd,Sm), **152**, 560 $\text{Ho}_2\text{Cu}_{6-x}\text{P}_{5-y}$, **151**, 150 In₄Sn₃O₁₂ substituted with Y and Ti, 153, 349 isoelectronically substituted (ZnO)₅In₂O₃, 150, 221 IrIn₂, 150, 19 K₂MnF₅·H₂O, neutron diffraction study, **150**, 104 LaB₆-(Ti,Zr)B₂ alloys prepared by eutectic crystallization, 154, 165 $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O (M = K,NH_4), 150, 81$ $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, 155, 455 $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_{3-\delta}\square_{\delta}$ (0 $\leq \delta \leq$ 0.15), effects of oxygen nonstoichio- $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, 153, Li-Mn-Fe-O spinels: computer modeling of Li ion distribution, 153, Li_{0.5}Pb_{1.75}GeS₄, isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Li₂Ti₃O₇, H phase, engineered scavenger compound, 152, 546 Mn₃Ga₅ pseudo-decagonal approximant, 153, 398 Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D incommensurate modulation, 152, 573 $RE_5Mo_{32}O_{54}$ (RE = La,Ce,Pr,Nd) with trans-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, 152, 403 $Na_2M_2(BO_3)_2O$ (M = Al,Ga), comparison with other layered oxybor-Na₃In(PO₄)₂ polymorphous modifications, 149, 99 Na_{0.5}Pb_{1.75}GeS₄, isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Na_{1.5}Pb_{0.75}PSe₄, isostructural relationship to Na_{0.5}Pb_{1.75}GeS₄ and $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, 154, 427 Nb₁₂O₂₉, correlation with electronic structure, **149**, 176 [NH₃CH₂CH(OH)CH₂NH₃][Co₂(PO₄)₂] and [NH₃CH₂CH(OH) $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), 155, 37 $R_2 \text{NiB}_{10}$ (R = Y,Ce-Nd,Sm,Gd-Ho), **154**, 246 $Ni_yMo_6Se_{8-x}S_x$ solid solution, **155**, 250 $Ni(NH_3)_2X_2$ (X = Cl,Br,I), **152**, 381 $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via different precursors, 151, 298 α -Ni(VO₃)₂·2H₂O and Ni(VO₃)₂·4H₂O, **152**, 511 $Tl_2Nb_2O_{6+x}$ phases with pyrochlore structure, 155, 225 ``` Tl(Ln_2Sr_2)Ni_2O_9 (Ln = La,Pr,Nd,Sm,Eu,Gd), 150, 1 Pb₅Al_{2.96}Cr_{0.04}F₁₉ at 300 K, 155, 427 Pb₅Bi₁₈P₄O₄₂, 151, 181 TlTe, 149, 123 Pb₇F₁₂Cl₂: disordered modification, 149, 56 TlZn(PO₃)₃, 154, 584 [Pb₆O₄](OH)(NO₃)(CO₃), 153, 365 UFe₅Sn, 154, 551 LnPdGe (Ln = La-Nd,Sm,Gd,Tb), 154, 329 UNi_{1.9}Sn single crystals, 149, 120 (UO_2)_3(VO_4)_2 \cdot 5H_2O, 150, 72 pillared 3D Mn(II) coordination network with rectangular channels, M_6(UO_2)_5(VO_4)_2O_5 (M = Na,K), 155, 342 152, 152 piperazinium(2+) selenate monohydrate, 150, 305 (V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\}\cdot 2H_2O, 155, 238 RP_5O_{14} (R = La,Nd,Sm,Eu,Gd), 150, 377 (VO)₂P₂O₇ phase grown at 3 GPa, 153, 124 polymeric Ag(I)-hexamethylenetetramine complexes, 152, 211 Ln_7VO_4Se_8 (Ln = Nd,Sm,Gd), 154, 564 (Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O(X = S,Se; M = Mn,Ni), 153, 195 \{[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]\}_n, 151, 286 (Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6] (M = Mn,Ni), 153, 195 \{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n, 151, 286 \{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n, 151, 286 PrRhIn, 152, 560 Pr_{1-x}Sr_xFeO_{3-\delta}, 150, 233 W_2O_3 \cdot P_2O_7 with empty tunnel structure, 155, 112 rare-earth-rich ternary pnictides RE_5M_2X (RE = Y,Gd,Tb,Dy,Ho, (Y,RE)Al_3(BO_3)_4 solid solutions (RE = Nd,Gd,Ho,Yb,Lu), 154, 317 Er, Tm, Lu; M = \text{Ni,Pd}; X = \text{Sb,Bi}), 152, 478 Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55 Rb₅Au₃O₂ and Rb₇Au₅O₂, 155, 29 zeolite-like heterobimetallic cyanide frameworks with quaternary ions Rb_2[B_4O_5(OH)_4] \cdot 3.6H_2O, 149, 197 R_4N^+ (R = nPr, nBu, nPen) as structure directors, 152, 286 Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12} (x \cong 0.05) with 12 rings, 149, 107 RbLn_2CuSe_4 (Ln = Sm,Gd,Dy), 151, 317 Rb_{1.5}Ln_2Cu_{2.5}Se_5 (Ln = Gd,Dy), 151, 317 Zn_4(PO_4)_2(HPO_4)_2 \cdot 0.5(C_{10}H_{28}N_4) \cdot 2H_2O, 154, 368 Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), X-ray single crystal and ZrIn₂, 150, 19 neutron powder diffraction studies, 149, 9 ZrM(OH)_2(NO_3)_3 (M = K,Rb), ab initio determination from X-ray pow- Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2}) (n = 1 to 4) superconducting cluster com- der diffraction, 149, 167 pounds, 155, 417 ZrPOF-n family zirconium phosphate fluorides with 2D and 3D struc- Rb₂Sb₈S₁₃·3.3H₂O, 155, 409 ture types, 149, 21 RbSm₂Ag₃Se₅, 151, 317 Cyclohexaphosphates Sb₅PO₁₀, 155, 451 Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, 153, 185 Sc₂AlB₆, 154, 49 D ScOs₃B₄, channel structure, 154, 232 seven-coordinated diaguasuccinatocadmium(II) bidimensional polymer, DC sputtering ZnO and In₂O₃ or ITO targets, films deposited by, structures and Ln_2(SiO_4)Te (Ln = Nd,Sm), monoclinic and orthorhombic crystals, 155, physical properties, 155, 312 SmNi_{1-x}Co_xO_3, relationship to physical properties, 150, 145 Debye temperature SnBr₂, 149, 28 B_{12}P_2 wafers, 154, 33 SrAl₂B₂O₇, 150, 404 Decomposition temperature Sr_{1,25}Bi_{0,75}O₃, determination as function of temperature from synchro- CaRh₂O₄, 150, 213 tron X-ray powder diffraction data, 150, 316 Defect chemistry NdDyBa_{2-x}Sr_{x}Cu_{2+y}Ti_{2-y}O_{11-\delta} NdDyCaBa_{2-x}Sr_xCu_{2+y} SrC₂, 151, 111 and Sr_nFe_nO_{3n-1} (n=2,4,8,\infty), oxygen-vacancy-ordered perovskites, evolu- Ti_{3-\nu}O_{14-\delta}, 155, 216 tion and relationship to electronic and magnetic properties, 151, 190 Dehydration Sr₄Fe₂O₆CO₃, 152, 374 topochemical, Ruddlesden-Popper tantalates and titanotantalates, β-SrGa₂O₄ and ABW-type γ-SrGa₂O₄, framework structures, 153, 294 155, 46 γ-SrHPO₄, 152, 428 Delafossite Sr_{0.4}K_{0.6}BiO₃, determination as function of temperature from synchro- related CuInO₂, synthesis, 151, 16 tron X-ray powder diffraction, 150, 316 Delithiation partial acid delithiation effects on electrochemical insertion properties of Sr_{3.75}K_{1.75}Bi₃O₁₂, 152, 492 Sr_{3.1}Na_{2.9}Bi₃O₁₂, 152, 492 Ni-stabilized LiMn₂O₄ spinel oxides, 150, 196 Sr₂NiN₂, 154, 542 Density functional theory Sr_{11}Re_4O_{24} double oxide, 149, 49 R_5B_2C_5 (R = Y,Ce-Tm), 154, 286 Sr₃Ru₂O₇, distortions in, neutron diffraction study, 154, 361 clathrates: potential as thermoelectric materials, 149, 455 Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19} (x = 0.87), 152, 540 A_2T_2Sn (A = Ce,U; T = Ni,Pd): band magnetism calculations, 149, 449 Sr₂Sn(OH)₈, 151, 56 Deuterium SrV₄O₉ in metastable state, 149, 414 CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neu- superconductors of 2212 type in Tl-Hg-Ba-Sr-Ca-Cu-O system, XRD tron diffraction study between 20 and 290 K, 149, 60 studies, 153, 106 YMn₂D_{1,15}, structural and magnetic properties, 154, 398 tantalum chloride-graphite intercalation compound, analysis with mo- YMn₂D₂ single phase, synthesis, study by in situ neutron diffraction, lecular simulations, 149, 68 150, 183 Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and poly- Diamagnetism phenolic 2D motifs, 152, 130 Hg₆As₄BiCl₇, Hg₆Sb₄BiBr₇, and Hg₆Sb₅Br₇, 154, 350 Ti₃NiAl₂N, 155, 71 Diamines Ti₃Rh₂In₃, 150, 19 intercalation compounds of SnS₂ single crystals, synthesis and character- TIF, 150, 266 ization, 150, 391 ``` and 5-nitrosalicylaldehyde, Schiff base ligands derived from, mechanochemical reaction with polymeric oxovanadium(IV) complexes, 153, 9 trans-1,4-Diaminocyclohexane $[amH_2]_{0.5}[Zr_2(PO_4)(HPO_4)_2F_2] \cdot 0.5H_2O$ and $[amH_2]_{1.5}$ $[Zr_3(PO_4)_3F_6] \cdot 1.5H_2O$, with 2D and 3D structures, synthesis and crystal structures, **149**, 21 1,3-Diaminopropane $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, 155, 37 Diaquasuccinatocadmium(II) seven-coordinated bidimensional polymer, crystal structure structure and vibrational and thermal behavior, **153**, 1 Dichromate Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 Dielectric constant ACu₃Ti₄O₁₂ and ACu₃Ti₃FeO₁₂, **151**, 323 Dielectric properties BaTiO₃, effects of flux additions, 155, 86 N-benzyl piperidinium dihydrogenmonophosphate, **155**, 298 BiSeO₃Cl, **149**, 236 C.O. Al O. NIL O. CaO: Al₂O₃: Nb₂O₅ system, **155**, 78 Differential scanning calorimetry Sr(OH)Br, analysis of hydroxide ion disorder, 151, 267 Differential thermal analysis Cs₂CuP₃S₉, chiral compound with chiral screw helices, 151, 326 1,2-Dihydro-N-aryl-4,6-dimethylpyrimidin-2-ones crystal structures, C-H···O and C-H···N networks in, 152, 221 Dimethylamine intercalation into TiS2, 155, 326 2,2-Dimethyl-1,3-diaminopropane [amH₂]_{0.5}[Zr₃(PO₄)₃(HPO₄)F₂]·1.5H₂O, with 2D and 3D structure types, synthesis and crystal structures, **149**, 21 N,N'-Dimethylpiperazinium(2+) selenate dihydrate crystal structure, vibrational spectra, and thermal behavior, **150**, 305 Diols C₄, intercalates with vanadyl and niobyl phosphates, preparation and characterization, **151**, 225 Dion-Jacobson niobates KCa₂Nb₃O₁₀ layered perovskite, crystal structure, **151**, 40 4,4'-Dipyridyldisulfide coordination polymers with, synthesis and structure, 152, 113 Disorder anions in $Eu_3(BO_3)_2F_3$, evidence from Eu^{3+} luminescence: comparison with $Ba_2Eu(CO_3)_2F_3$, **153**, 270 cation anti-site, rare earth oxide pyrochlores, 153, 16 cations in three-layer Aurivillius phases, 153, 66 M₅Ge₄ compounds in Ge-Ta-Zr system, 150, 347 hydroxide ions of Sr(OH)Br, 151, 267 Dissociation energy graphite monofluoride, analysis with 3D cyclic cluster approach, 150, 286 Distortions \vec{q} and $2\vec{q}$ distortions in incommensurately modulated low-temperature structure of NiTa₂Se₇, **153**, 152 1,10-Dithia-18-crown-6 alkali cation ligating iodocuprate(I)-based coordination networks with, **152**, 271 Dynamic shear modulus Fe-doped boron, 154, 188 Dysprosium Dy_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bonding, **152**, 478 DyB₆, magnetic entropy, **154**, 275 Dy_{2/3}Cu₃Ti₄O₁₂, dielectric constant, 151, 323 Dy₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties. 154, 246 Dy_6MTe_2 (M = Fe,Co,Ni), synthesis, structure, and bonding, 155, 9 (Hg,M)Sr₂(Dy,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11- δ} and NdDyCaBa_{2-x}Sr_xCu_{2+y} Ti_{3-y}O_{14- δ}, defect chemistry and electrical properties, **155**, 216 RbDy₂CuSe₄, synthesis and structures, 151, 317 Rb_{1.5}Dy₂Cu_{2.5}Se₅, synthesis and structure, **151**, 317 site preference in hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂], 149, 391 Ε Editorial, 149, 1 Electrical conductivity Ba_6Ge_{25-x} , $Ba_6Ge_{23}Sn_2$, and $Ba_6Ge_{22}In_3$, 153, 321 $A_3 \text{Bi}_5 \text{Cu}_2 \text{S}_{10} \ (A = \text{Rb}, \text{Cs}), \ 155, \ 243$ $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$ ceramics, effect of particle size, 155, 273 boron and boron phosphide films, 154, 26 B₁₂P₂ wafers, 154, 33 B-Si thin film prepared by pulsed laser deposition, 154, 141 CeVO₄, Ce_{1-x}MVO_{4-0.5x} (M = Ca,Sr,Pb), and Ce_{1-y}Bi_yVO₄ with zircon-type structure prepared by solid-state reaction in air, **153**, 174 $t'_{meta}\text{-}(Ce_{0.5}Zr_{0.5})O_2$ phase prepared by reduction and successive oxidation of t' phase, 151, 253 Cu₂SnS₃ nanocrystals, 153, 170 graphite monofluoride, analysis with 3D cyclic cluster approach, 150, 286 In₄Sn₃O₁₂ substituted with Y and Ti, 153, 349 IrIn₂, 150, 19 KBi₂CuS₄, **155**, 243 La₅Cu₆O₄S₇, **155**, 366 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, **155**, 280 Mg-Fe-O system, 149, 33 β -rhombohedral boron doped with metal, **154**, 13 Sr(OH)Br, analysis of hydroxide ion disorder, 151, 267 Ti₃Rh₂In₃, **150**, 19 Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55 ZrIn₂, 150, 19 Electrical properties $B_{12}P_2$ wafers, **154**, 33 $(Cd_{1-x}Mn_x)Mn_2O_4$, **153**, 231 GdCuAs₂, GdCuAs_{1,15}P_{0,85}, and GdCuP_{2,20}, **155**, 259 GdNi $_3X_2$ (X = Al,Ga,Sn), relationship to synthesis conditions, **150**, 62 In $_2O_3$ – M_2O_3 (M = Y,Sc) solid solutions doped with Sn, **153**, 41 $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_{3-\delta}\square_{\delta}~(0\leq\delta\leq0.15)$, effects of oxygen nonstoichiometry. **151**, 139 $RE_5\text{Mo}_{32}\text{O}_{54}$ (RE = La,Ce,Pr,Nd) with trans-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, **152**, 403 NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11- δ} and NdDyCaBa_{2-x}Sr_xCu_{2+y} Ti_{3-y}O_{14- δ}, **155**, 216 $R_2 \text{NiB}_{10} \ (R = \text{Y,Ce-Nd,Sm,Gd-Ho}), 154, 246$ PrRhIn, 152, 560 $SmNi_{1-x}Co_xO_3$, relationship to structure, **150**, 145 Sr₂NiN₂, **154**, 542 $\{[W_4Ag_6S_{16}]\cdot [Ca(DEAC)_6]\}_n$, 151, 286 ${[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n$, 151, 286 ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, **155**, 312 Electrical resistivity $Sr_nFe_nO_{3n-1}$ (n = 2,4,8, ∞), oxygen-vacancy-ordered perovskites, rela- $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), **152**, 474 tionship to crystal structure, 151, 190 Ce2Ni2Cd, 150, 139 Electronic structure $R_5B_2C_5$ (R = Y,Ce-Tm), **154,** 286 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, 154, 45 EuSn₃Sb₄ and related Zintl phases, 150, 371 CdCr₂S₄ and CdCr₂Se₄ spinels, 155, 198 $La_{n+1}Ni_nO_{3n+1}$ (n = 2,3), **152**, 517 $FeZn_{10}$ and $Fe_{13}Zn_{39}$, **151**, 85 Na₂Ti₂Sb₂O, relationship to structure, powder neutron diffraction GdCuAs₂, GdCuAs_{1.15}P_{0.85}, and GdCuP_{2.20}, **155**, 259 graphite monofluoride, analysis with 3D cyclic cluster approach, 150, study, 153, 275 Nd_{1-x}TiO₃ perovskites, 155, 177 $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via dif-K_{1.8}Mo₉S₁₁, 155, 124 ferent precursors, 151, 298 LaTe₂, 149, 155 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n = 1 to 4) superconducting cluster com- $A_2\text{Mo}_9\text{S}_{11}$ (A = K, Nb), **155**, 124 pounds, 155, 417 Nb₁₂O₂₉, coexistence of localized and delocalized electrons, **149**, 176 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, 153, 140 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n = 1 to 4) superconducting cluster com- $Sm_{1-x}TiO_3$ perovskites, 155, 177 pounds, 155, 417 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x = 1,1.5,2) Ruddlesden-Popper phases, 155, 96 three-coordinate organoboron compounds, 154, 5 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), **152**, 540 W₅As₄, **154**, 384 $Tl_2Nb_2O_{6+x}$ phases with pyrochlore structure, 155, 225 Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55 YB₄₁Si_{1.2}, **154**, 229 Electron microscopy, see also High-resolution electron microscopy; Trans-Electrochemical synthesis mission electron microscopy $M_{1-x} \text{Sm}_x \text{SO}_4 \ (M = \text{Ba,Sr}), 154, 535$ InSn oxide powders, 154, 444 paracrystal formation from Ni_{1-x}O and CaO upon interdiffusion, 152, Electrochemistry insertion properties of Ni-stabilized LiMn₂O₄ spinel oxides, effects of 421 Electron paramagnetic resonance partial acid delithiation, 150, 196 Li insertion into Mg₂Si, reaction mechanism, 153, 386 $La_{1-x}Eu_xNiO_3 \ (0 \le x \le 1), 151, 1$ Li_{2+x}Ti₃O₇ prepared by, structural study, **153**, 132 TiO₂ rutile solid solutions: redox behavior of VIB transition metal ions, β -LiVOAsO₄, **150**, 250 **152**, 412 (VO)₂P₂O₇ phase grown at 3 GPa, 153, 124 TiB₂ in cryolite-alumina melt and in molten aluminum, 154, 107 Electroluminescence Yb^{3+} doped in Ba_2LuTaO_6 , 150, 31 conjugated molecule doped in polymer, effect of excimer behavior, 153, Electron-phonon interaction β -rhombohedral boron doped with metal, **154**, 13 192 three-coordinate organoboron compounds, 154, 5 Electron probe microanalysis Electron diffraction quantitative, boron, 154, 177 Ba₈Co₇O₂₁, **151**, 77 Electrons, see also Lone pair electrons $(1 - x)Bi_2O_3 \cdot xCaO$ (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related counting in compounds structurally related to Ti₅Te₄, theoretical study, phases, 149, 218 154, 384 Cu₂Gd_{2/3}S₂: interlayer short-range order of Gd vacancies, 152, 332 delocalized and localized, coexistence in Nb₁₂O₂₉, 149, 176 $Li_{2+x}Ti_3O_7$ obtained electrochemically, **153**, 132 Electron transfer reactions Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D solvent equation of state near critical point for, spin-exchange term in, incommensurate modulation, 152, 573 **151,** 102 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, 154, 427 Elpasolite order-disorder phenomena in $SrMn_{1-y}(B,C)_yO_{3-\delta}$ perovskite-related Cs₂KMnF₆, high-pressure phase transition, 153, 248 oxyborocarbonates, 149, 226 Enthalpy-entropy compensation theory oxygen/fluorine ordering in rutile-type FeOF, 155, 359 carbon tetrachloride-neopentane system, 154, 390 selected area, Bi₂O₃-MoO₃ system: compounds with structure based on Entropy of formation Ca-Rh-O system, measurement, solid state cells with buffer electrodes $[Bi_{12}O_{14}]_{\infty}$ columns, **149**, 276 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$: charge ordering and magnetotransport transitions, for, 150, 213 Entropy of mixing **153,** 140 alkali halide solid solution, 153, 118 $TlCo_{2-x}Cu_{x}Se_{2}$ (x ~ 1) system, **151**, 260 YB₆₆: effects of transition metal doping, 154, 54 $Ba_4Er_2Cu_7O_{15-\delta}$, structural effects of Au and Al incorporation, 150, 228 Electron dispersive spectroscopy Bi₂O₃-MoO₃ system: compounds with structure based on [Bi₁₂O₁₄]₀₀ CaErPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic columns, 149, 276 measurements, 150, 112 $\operatorname{Er}_5 M_2 X$ (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bond- Electronic energies boron compounds, quasi-classical determination, 154, 148 Electronic properties BaIr_{1-x}Co_xO_{3- δ} perovskites (x = 0.5,0.7,0.8), **152**, 361 $R_5B_2C_5$ (R = Y,Ce-Tm), **154**, 286 Ce atoms in CeO₂ nanoncrystals, X-ray absorption spectroscopic study, **149.** 408 icosahedral boron-rich solids, correlation with structural defects, 154, A_2T_2 Sn (A = Ce,U; T = Ni,Pd), local spin density functional calculations, 149, 449 Ethylenediamine (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal struc- $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neu- (Hg,M)Sr₂(Er,Ce)₂Cu₂O₂ 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488 ing, **152,** 478 tron diffraction studies, 150, 188 ture, and spectroscopic properties, 154, 460 [C₂N₂H₁₀]₂Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, 154, 507 role in solvothermal synthesis of chalcogenides ${\rm Ag_8Sn}E_6$ (E = S,Se), 149, 338 Ethylene glycol preparation of metallic powders and alloys in, thermodynamic approach, **154**, 405 Europium Ba₂Eu(CO₃)₂F₃, optical behavior, comparison with Eu₃(BO₃)₂F₃, **153**, 270 Eu²⁺, luminescence in doped crystalline SrAl₂B₂O₇, 150, 404 EuB_6 , interband transitions, IR-active phonons, and plasma vibrations, 154, 87 Eu₁₆Bi₁₁, synthesis, structure, and properties, **155**, 168 Eu₃(BO₃)₂F₃, anionic disorder in, evidence from Eu³⁺ luminescence: comparison with Ba₂Eu(CO₃)₂F₃, **153**, 270 EuP₅O₁₄, crystal structure and magnetic properties, **150**, 377 Eu₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, **152**, 441 Eu₁₆Sb₁₁, synthesis, structure, and properties, 155, 168 EuSn₃Sb₄ and related metallic Zintl phases, synthesis, structure, and resistivity, **150**, 371 (Hg,M)Sr₂(Eu,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 $\text{La}_{1-x}\text{Eu}_x\text{NiO}_3$ (0 \leq x \leq 1), metal-insulator transition and magnetic properties, **151**, 1 Tl(Eu₂Sr₂)Ni₂O₉, synthesis and structure, 150, 1 Exchange inversion $Sm_{(1-x)}Gd_xTiO_3$, **154**, 619 Excimer formation, effect on photoluminescence and electroluminescence of conjugated molecule doped in polymer, **153**, 192 Extended solids frameworks for, geometrical design principles, 152, 3 Extended X-ray absorption fine structure CeO₂ nanocrystals, 149, 408 NiCo₂O₄, 153, 74 F Far-infrared spectroscopy Cs₂CuP₃S₉, chiral compound with chiral screw helices, **151**, 326 Ferroelastic phases Pb₅Al_{2.96}Cr_{0.04}F₁₉, crystal structure at 300 K, **155**, 427 Ferromagnetism $Ln_{0.4}Ca_{0.6}MnO_3$ rich in Mn(IV), induction by Ru doping, 151, 330 Figure of merit boron and boron phosphide films, 154, 26 β -rhombohedral boron doped with metal, **154**, 13 YB₄₁Si_{1.2}, **154**, 229 Floating zone growth rare-earth hexaboride crystals, 154, 238 Fluorapatite calcium fluorapatite, conversion into calcium hydroxyapatite under alkaline hydrothermal conditions, **151**, 65 Fluorescence spectroscopy one-dimensional uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, **154**, 635 Fluorine Ag(TCNQF₄) crystalline polymer, structure and magnetic properties, 152, 159 $BaMBO_3F_2$ (M = Ga,Al), crystal structure, 155, 354 Ba₂Eu(CO₃)₂F₃, optical behavior, comparison with Eu₃(BO₃)₂F₃, **153**, 270 BaLiF₃ doped with Ce³⁺, optical spectroscopy properties and charge compensation, **150**, 178 $Ca_6Sm_2Na_2(PO_4)_6F_2$, crystal structure and polarized Raman spectra, 149, 308 $[C_2N_2H_{10}]_2$ Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507 Cs₂KMnF₆, phase transition crystal structures of low- and high-temperature modifications, 150, 399 at high pressure, 153, 248 Eu₃(BO₃)₂F₃, anionic disorder in, evidence from Eu³⁺ luminescence: comparison with Ba₂Eu(CO₃)₂F₃, **153**, 270 FeOF, rutile-type, oxygen/fluorine ordering in, electron diffraction and crystal chemical studies, 155, 359 graphite monofluoride, structure and properties, analysis with 3D cyclic cluster approach, **150**, 286 KCuF₃ and K₂CuF₄, extended magnetic solids, spin exchange interactions in, 151, 96 K₂MnF₅·H₂O, neutron diffraction study, **150**, 104 KNiF₃ and K₂NiF₄, extended magnetic solids, spin exchange interactions in, 151, 96 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, synthesis and crystal structure, 149, 189 1D uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, hydrothermal syntheses, structures, and fluorescence spectroscopy, **154**, 635 $Pb_5Al_{2.96}Cr_{0.04}F_{19}$, ferroelastic phase, crystal structure at 300 K, 155, 427 Pb₇F₁₂Cl₂, disordered modification of, synthesis and structure, **149**, 56 PF₆ counterion, role in anomalous spin crossover of mechanically strained Fe(II)–1,10-phenanthroline complexes, **153**, 82 TIF, crystal structures, 150, 266 ZrPOF-*n* family with 2D and 3D structure types, synthesis and crystal structures, **149**, 21 Fluorite (1 - x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 phases, electron diffraction and XRD studies, **149**, 218 intermediate cubic phase crystallized from Synroc alkoxide precursor at 800 °C, **150**, 209 $Mo_{0.16}Bi_{0.84}O_{1.74}$, high-temperature cubic phase with 3D incommensurate modulation, synthesis and structure, **152**, 573 related oxides containing Ce, Pr, and/or Tb, lattice oxygen transfer in, 155, 129 Flux additions in BaTiO₃, overview and prospects, 155, 86 Flux growth Sm-doped SrSO₄ crystals, 154, 535 Sr₂NiN₂, **154**, 542 Flux synthesis $\text{Li}_{0.5}\text{Pb}_{1.75}\text{GeS}_4$, $\text{Na}_{1.5}\text{Pb}_{0.75}\text{PSe}_4$, and $\text{Na}_{0.5}\text{Pb}_{1.75}\text{GeS}_4$ with cubic structures, **153**, 158 Formate CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent Raman study, **154**, 338 Fractional site occupancy in M_5 Ge₄ compounds in Ge-Ta-Zr system, 150, 347 Framework topologies for extended solids, geometrical design principles, 152, 3 Franckeite misfit compound [(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370 Free energy of mixing alkali halide solid solution, 153, 118 Fulborenes $B_{12}N_{12},\,B_{24}N_{24},\,\text{and}\,\,B_{60}N_{60},\,\text{semiempirical}$ and molecular dynamics studies, 154, 214 Fulborenites prediction, lattice parameters, and densities, 154, 214 Functional crystals search criteria and design principles, 152, 191 G #### Gadolinium Ba₄Gd₂Cd₃S₁₀, synthesis and structure, **149**, 384 Cu₂Gd_{2/3}S₂, crystal structure: interlayer short-range order of Gd vacancies, 152, 332 Gd_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bonding, **152**, 478 GdB₆, magnetic entropy, 154, 275 GdCo₄B, magnetic properties, 154, 242 $GdCuAs_2$, symmetry-breaking transitions through $GdCuAs_{1.15}P_{0.85}$ to $GdCuP_{2.20}$, 155, 259 GdCu₃Ti₃FeO₁₂, dielectric constant, 151, 323 $GdNi_3X_2$ (X = Al,Ga,Sn), structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, **150**, 62 Gd₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, **154**, 246 Gd₂O₃-B₂O₃, thermal behavior and structural analysis, **154**, 204 GdPdGe, order of Pd and Ge atoms in, 154, 329 GdP₅O₁₄, crystal structure and magnetic properties, **150**, 377 Gd₇VO₄Se₈, synthesis and characterization, 154, 564 (Hg,M)Sr₂(Gd,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 RbGd₂CuSe₄, synthesis and structures, **151**, 317 Rb_{1.5}Gd₂Cu_{2.5}Se₅, synthesis and structure, **151**, 317 $Sm_{(1-x)}Gd_xTiO_3$, magnetism, **154**, 619 Tl(Gd₂Sr₂)Ni₂O₉, synthesis and structure, **150**, 1 (Y,Gd)Al₃(BO₃)₄ solid solutions, crystal growth and characterization, 154, 317 ## Gallium BaGaBO₃F₂, crystal structure, 155, 354 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with *p*-type thermoelectric cage structure, synthesis and characterization, **151**, 61 BaGa₂O₄, stuffed framework structure, **154**, 612 $MGa_2B_2O_7$ (M = Sr,Ba), crystal structures, 154, 598 Ga₂O₃-In₂O₃-SnO₂ system, tunneled intergrowth structures, **150**, 294 GaPO₄, structural phase transformations, **149**, 180 Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS glasses, magnetic susceptibility and local structure, 152, 388 $GdNi_3Ga_2$, structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, **150**, 62 intercalation compounds of anionic oxalato complexes with layered double hydroxides, **153**, 301 $KGaQ_2$ (Q = Se, Te) chalcogenides with stacking faults, synthesis and structure, **149**, 242 LaBaCuGaO₅, phase transition induced by high pressure, 155, 372 Mn_3Ga_5 pseudo-decagonal approximant, preparation and crystal structure, 153, 398 Na₂Ga₂(BO₃)₂O, crystal structure, comparison with other layered oxyborates and SiP₂O₇, **154**, 344 [NH₃(CH₂)₃NH₃]_{0.5}[Ga(OH)AsO₄], synthesis and characterization, **155**, 37 β-SrGa₂O₄ and ABW-type γ-SrGa₂O₄, framework structures, **153**, 294 ZnGa₂O₄ self-activated phosphors, luminescent properties, systematic tuning by Cd²⁺ substitution, **150**, 204 Gamma radiation induction of solid-state polymerization of sodium propynoate, **152**, 99 Geometric frustration La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈, **155**, 189 Germanium $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with *p*-type thermoelectric cage structure, synthesis and characterization, **151**, 61 Ba₆Ge_{25-x} structure and thermoelectric properties, **153**, 321 Ba₂₄Ge₁₀₀, preparation and structure, **151**, 117 Ba₆Ge₂₂In₃, structure and thermoelectric properties, **153**, 321 Ba₆Ge₂₃Sn₂, structure and thermoelectric properties, **153**, 321 Cs₈Na₁₆Ge₁₃₆ clathrate, synthesis and characterization, 153, 92 $Ga_2S_3(As_2S_3,PbS)$ – GeS_2 –MnS glasses, magnetic susceptibility and local structure, **152**, 388 M_5 Ge₄ compounds in Ge-Ta-Zr system, structure-composition relations and fractional site occupancy, **150**, 347 GeSe₂ three-dimensional crystals, structural transformations at high pressures and temperatures, **150**, 121 Li_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Na_{0.5}Pb_{1.75}GeS₄, **153**, 158 mesostructured 3D materials based on [Ge₄S₁₀]⁴⁻ and [Ge₄Se₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 $Na_{0.5}Pb_{1.75}GeS_4$ with cubic structure, flux synthesis and isostructural relationship to $Na_{1.5}Pb_{0.75}PSe_4$ and $Li_{0.5}Pb_{1.75}GeS_4$, 153, 158 LnPdGe (Ln = La-Nd,Sm,Gd,Tb), order of Pd and Ge atoms in, 154, 329 $Rb_8Na_{16}Ge_{136}$ clathrate, synthesis and characterization, 153, 92 SnO_2 homogeneous substituted with, sol-gel synthesis and characterization, 154, 579 Yb₃Pd₄Ge₄, order of Pd and Ge atoms in, 154, 329 Gibbs energy of formation Ca-Rh-O system, measurement, solid state cells with buffer electrodes for, **150**, 213 metallic powder and alloy preparation in polyol media, **154**, 405 Glass Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS, magnetic susceptibility and local struc- ture, **152**, 388 $Na_2O-B_2O_3$ system, phase separation in, NMR study, 149, 459 Gold Cs₇Au₅O₂, synthesis, structure, and properties, **155**, 29 incorporation into Ba₄Er₂Cu₇O_{15-δ}, structural effects, **150**, 228 $Rb_5Au_3O_2$ and $Rb_7Au_5O_2,$ syntheses, structures, and properties, 155, 29 Graphite intercalated with TaCl₆ and TaOCl₃, structural analysis with molecular simulations, **149**, 68 oxidation protection by BN coatings, 154, 162 Graphite monofluoride structure and properties, analysis with 3D cyclic cluster approach, 150, 286 Grüneisen parameter B₁₂P₂ wafers, **154**, 33 Guest-host interactions effects on properties of anion-exchanged Mg-Al hydrotalcites, 155, 332 Н Hafnium $BaHf_{1-x}Zr_x(PO_4)_2$, UV-emitting X-ray phosphor, **155**, 229 Hf-B-C system, phase equilibria, calculation by thermodynamic modeling, 154, 257 Halides low-temperature reaction with Aurivillius phases, **150**, 416 Hall coefficient YB₄₁Si_{1.2}, **154**, 229 Hardness Al₃BC₃ at high pressure, **154**, 254 $(Cr_{1-x}TM_x)_3B_4(TM = Ti,V,Nb,Ta,Mo,W)$ large crystal microhardness, 154, 45 rare-earth hexaboride crystals at high temperature, 154, 238 Heat capacity B₁₂P₂ wafers, **154**, 33 Nd_{1-x}TiO₃ perovskites, **155**, 177 $Sm_{1-x}TiO_3$ perovskites, **155**, 177 Heterobimetallic cyanide frameworks zeolite-like, synthesis, quaternary ions R_4N^+ (R=nPr,nBu,nPen), as structure directors for, 152, 286 Heterocyclic amines intercalation into α-titanium hydrogenphosphate, structural and calorimetric study, **154**, 557 Hexacyanoferrate(III) Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 Hexamethylenetetramine Ag(I) complexes, polymeric, structure and topological diversity, **152**, 211 High-resolution electron microscopy A-site cation vacancy ordering in $Sr_{1-3x/2}La_xTiO_3$, 149, 360 BaBi₃O_{5.5}: crystal growth and structure, 152, 435 Ba₈Co₇O₂₁, **151**, 77 Bi_2O_3 -MoO₃ system: compounds with structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, 149, 276 1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi–Sr ordering, **151**, 210 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), **150**, 188 LaBaCuGaO₅: phase transition induced by high pressure, **155**, 372 order–disorder phenomena in $SrMn_{1-y}(B,C)_yO_{3-\delta}$ perovskite-related oxyborocarbonates, **149**, 226 Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru: correlation of micronanostructure with magnetic transitions, **155**, 15 RE_xWO_3 (RE = La,Nd) synthesized under high pressure, **154**, 466 YBa₂Cu₄O₈ superconductor: surface profile imaging, **149**, 327 Hole conductivity Fe-doped boron, 154, 188 Holmium (Hg,M)Sr₂(Ho,Ce)₂Cu₂O₂ 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 $\text{Ho}_5 M_2 X (M = \text{Ni,Pd}; X = \text{Sb,Bi})$ pnictides, crystal structure and bonding, **152**, 478 HoB₆, magnetic entropy, 154, 275 $\text{Ho}_2\text{Cu}_{6-x}\text{P}_{5-y}$, crystal structure and $(RE_{m+n})(\text{Cu}_2\text{P}_3)_m(\text{Cu}_4\text{P}_2)_n$ relationship to other rhombohedral rare earth copper phosphides, **151**, 150 ${ m Ho_2NiB_{10}},$ synthesis, crystal structure, and magnetic and electrical properties, 154, 246 SrO-Ho₂O₃-CuO_x system, phase relations, **149**, 333 (Y,Ho)Al₃(BO₃)₄ solid solutions, crystal growth and characterization, 154, 317 Hopping conduction β -rhombohedral boron doped with metal, 154, 13 Host-guest chemistry cavity-containing materials based upon resorcin[4]arenes, **152**, 199 quaternary ions R_4N^+ (R = nPr, nBu, nPen) as structure directors for synthesis of zeolite-like heterobimetallic cyanide frameworks, **152**, 286 Hume-Rothery phases FeZn₁₀ and Fe₁₃Zn₃₉, synthesis, crystal structure, and electronic and bonding analysis. **151**, 85 Hydrogen, see also Deuterium Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure of molecular and extended complexes, **152**, 247 Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, structures and magnetic properties, 152, 159 alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271 N-benzyl piperidinium dihydrogenmonophosphate, crystal structure and phase transitions, **155**, 298 CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent Raman study, **154**, 338 C(CH₃)₄, system with CCl₄, thermodynamics, **154**, 390 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236 CH₄, mixture with H₂, temperature-programmed reaction with, in synthesis of tungsten carbides, **154**, 412 (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180 (CH₃NH₃)₃Bi₂Cl₉, low-temperature phase transition and structural relationships, **155**, 286 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, hydrothermal synthesis and crystal structure, **155**, 409 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514 (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, hydrothermal synthesis and characterization, **154**, 514 $[C_2N_2H_{10}]_2$ Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507 $[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}$, isolation and transformation to $[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}$, **150**, 417 [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280 coordination polymers with 4,4'-dipyridyldisulfide, synthesis and structure, **152**, 113 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174 [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141 1,2-dihydro-*N*-aryl-4,6-dimethylpyrimidin-2-ones, C–H···O and C–H···N networks in, **152**, 221 Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, 152, 229 H₂, mixture with CH₄, temperature-programmed reaction with, in synthesis of tungsten carbides, 154, 412 hexagonal frameworks based on 1,3,5-benzenetricarboxylate and directed by hydrogen bonds, 152, 261 H_xMoO₃ bronzes, CDW superstructures, 149, 75 (H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, **152**, 229 LiH₅TeO₆, preparation, crystal structure, vibrational spectra, and thermal behavior, **150**, 410 metal carboxylates, microporous materials, synthesis and gas occlusion properties, **152**, 120 methylamines, intercalation into TiS₂, 155, 326 Na₄Co₃H₂(PO₄)₄·8H₂O, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122 Na(O₂CC \equiv CH), structure and γ -ray-induced solid-state polymerization: effect of bilayer formation on solid-state reactivity, **152**, 99 [N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324 [NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, **151**, 145 $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(PO_4)_2]$ and $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(HPO_4)_3]$, synthesis and crystal structure, **155**, 62 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, **155**, 37 NH₂(CH₂)₄NH₂V₄O₉, spin exchange interactions of, spin dimer analysis, **153**, 263 $Ni(NH_3)_2X_2$ (X = Cl,Br,I), preparation and crystal structures, 152, polymeric Ag(I)-hexamethylenetetramine complexes, structure and topological diversity, 152, 211 polymorphous one-dimensional tetrapyridylporphyrin coordination polymers structurally mimicking aryl stacking interactions, 152, 253 Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), synthesis and structure, X-ray single crystal and neutron powder diffraction studies, 149, 9 γ-SrHPO₄, synthesis and crystal structure, 152, 428 Ti(IV)-aryloxide network materials with 4.4'-biphenoxide and polyphenolic 2D motifs, synthesis and characterization, 152, 130 α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, 154, 557 $(V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\}\cdot 2H_2O$, hydrothermal structure, and magnetic behavior, 155, 238 zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen), as structure directors for, 152, 286 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, 149, 107 $Zn_4(PO_4)_2(HPO_4)_2 \cdot 0.5(C_{10}H_{28}N_4) \cdot 2H_2O$, hydrothermal synthesis and crystal structure, 154, 368 ZrPOF-n family with 2D and 3D structure types, synthesis and crystal structures, 149, 21 Hydrogenation $GdNi_3X_2$ (X = Al,Ga,Sn), effect of synthesis conditions, 150, 62 YMn₂, followed by thermal treatment, single-phase YMn₂D₂ synthesis by, in situ neutron diffraction study, 150, 183 Hydrogen bonds cavity-containing materials based upon resorcin[4] arenes, 152, 199 1,2-dihydro-*N*-aryl-4,6-dimethylpyrimidin-2-ones: C-H···O and C-H···N networks, 152, 221 hexagonal frameworks directed by, based on coordinated 1,3,5-benzenetricarboxylate, 152, 261 in inorganic-organic coordination polymers generated from rigid or flexible bidentate ligands and Co(NCS)₂ · xH₂O, 155, 143 ladder-like Cu(II) coordination polymers, 152, 183 porphyrin-based microporous materials with, construction, 152, 87 γ-SrHPO₄, 152, 428 Hydronium $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, 154, 514 Hydrotalcite anion-exchanged Mg-Al hydrotalcites, properties of, effects of guesthost interactions, 155, 332 borate/nitrate or silicate/nitrate exchange in, effect of Mg:Al ratio, 151, 272 Hydrothermal synthesis aluminum phosphate oxalate hybrid open framework with large circular 12-membered channels, 150, 324 $BaMBO_3F_2$ (M = Ga,Al), 155, 354 $Ba_{1+x}V_8O_{21}$ bronze with tunnel structure, 150, 330 $Ba_6[V_{10}O_{30}(H_2O)] \cdot 2.5H_2O$ with unusual arrangement of V^{IV} -O polyhedra, 151, 130 Bi₂Pb₂O₇ with pyrochlore structure, **149**, 314 calcium hydroxyapatite from calcium fluorapatite under alkaline conditions. 151, 65 ${}_{\infty}^{3}$ [Cd(pdc)(H₂O)] and ${}_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], **152**, 236 $[(CH_3NH_3)_0, (NH_4)_1,]Sb_8S_{13} \cdot 2.8H_2O, 155, 409$ $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, 154, 514 $(C_2H_{10}N_2)[Ni(H_2O)_6](HPO_4)_2$, 154, 460 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2], 154, 514$ $[C_2N_2H_{10}]_2Fe_5F_4(PO_4)(HPO_4)_6$, 154, 507 [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, 152, 141 Fe(H₂NCH₂CH₂NH₂)MoO₄, **152**, 229 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157 $(H_3NCH_2CH_2NH_3)[Fe(C_2O_4)MoO_4], 152, 229$ LaVO₄, 152, 486 LaV₃O₉, 152, 486 Na₄Co₃H₂(PO₄)₄ · 8H₂O, **149**, 292 [NH₃CH₂CH(OH)CH₂NH₃][Co₂(PO₄)₂] and [NH₃CH₂CH(OH) CH_2NH_3 [$Co_2(HPO_4)_3$], 155, 62 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), 155, 37 one-dimensional uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, **154**, 635 open-framework metal phosphates from amine phosphates and monomeric four-membered ring phosphate, 152, 302 PbVO₂PO₄ with α -layered and β -tunnel structures, **149**, 149 pillared 3D Mn(II) coordination network with rectangular channels, **152,** 152 Rb₂Sb₈S₁₃·3.3H₂O, **155**, 409 solid solution series between β -Fe₂(PO₄)O and Fe₄(PO₄)₃(OH)₃, 153, γ-SrHPO₄, **152**, 428 $Sr_2Sn(OH)_8$, **151**, 56 SrV₄O₉ in metastable state, 149, 414 $(V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\}\cdot 2H_2O, 155, 238$ $Zn_4(PO_4)_2(HPO_4)_2 \cdot 0.5(C_{10}H_{28}N_4) \cdot 2H_2O$, **154**, 368 ZrPOF-n family zirconium phosphate fluorides with 2D and 3D structure types, **149**, 21 Hydroxide calcium hydroxyapatite, formation from calcium fluorapatite under alkaline hydrothermal conditions, 151, 65 [Ca₁₀(PO₄)₆(OH)₂] hydroxyapatite, site preference of rare earth elements in, 149, 391 Cd(OH)Cl, synthesis, crystal structure, and relationship to brucite type, **151,** 308 Cu(OH)Cl, synthesis and crystal structure, relationship to brucite type, 151, 308 $Fe_4(PO_4)_3(OH)_3$, and β - $Fe_2(PO_4)O$, solid solution series between, synthesis and phase characterization, 153, 237 layered double hydroxides, anionic intercalation of oxalato complexes into, 153, 301 $[NH_3CH_2CH(OH)CH_3]_3 \cdot Al_3P_4O_{16},$ synthesis, racemic ropanolamine as solvent and template for, 151, 145 [NH₃CH₂CH(OH)CH₂NH₃][Co₂(PO₄)₂] and [NH₃CH₂CH(OH)CH₂ NH₃][Co₂(HPO₄)₃], synthesis and crystal structure, 155, 62 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, 155, 37 [Pb₆O₄](OH)(NO₃)(CO₃), crystal structure, 153, 365 Rb₂[B₄O₅(OH)₄] · 3.6H₂O, crystal structure and thermal behavior, 149, Sr(OH)Br, hydroxide ion disorder in, 151, 267 Sr₂Sn(OH)₈, hydrothermal synthesis and structure, 151, 56 [Zn-Al-Cl] layered double hydroxide, thermally treated, X-ray diffraction pattern simulation, 152, 568 $ZrM(OH)_2(NO_3)_3$ (M = K,Rb), ab initio structure determination from X-ray powder diffraction, 149, 167 Hydroxyapatite calcium hydroxyapatite, formation from calcium fluorapatite under alkaline hydrothermal conditions, 151, 65 [Ca₁₀(PO₄)₆(OH)₂], site preference of rare earth elements in, 149, topotaxial replacement of chlorapatite under hydrothermal conditions, effect of metal ions, 154, 569 Hyperfine characterization pure and doped zircons, 150, 14 Hyperfine interactions ¹¹⁹Sn dopant atoms in Ca₂Fe₂O₅, **151**, 313 Impedance spectroscopy Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545} ceramics: particle sized effects on sintering and conductivity, **155**, 273 I Incommensurate modulation cadmium apatites, 150, 154 three-dimensional, $Mo_{0.16}Bi_{0.84}O_{1.74}$ high-temperature cubic fluorite-type phase, **152**, 573 Indium Ba₆Ge₂₂In₃, structure and thermoelectric properties, 153, 321 CaIn₂O₄ phosphors activated by Pr, luminescence properties, 155, 441 CuInO₂ delafossite-type oxide, synthesis, 151, 16 Ga₂O₃-In₂O₃-SnO₂ system, tunneled intergrowth structures, 150, 794 $(In_{0.5}\square_{0.5})[In_{1.5}Sn_{0.5}]S_4$, vacant thiospinel, reversible lithiation, pressure-sensitive modeling, **152**, 533 $In_2O_3-M_2O_3$ (M=Y,Sc) solid solutions doped with Sn, electrical, optical, and structural properties, 153, 41 In_2O_3 - TiO_2 -MgO system at 1100 and 1350°C, phase relations, **150**, 276 In₄Sn₃O₁₂ substituted with Y and Ti, structure and thermoelectric properties, 153, 349 InSn oxide powders, hydrothermally derived, sintering in air, **154**, 444 IrIn₂, structure, chemical bonding, and properties, **150**, 19 LiIn(MoO₄)₂, vibrational and X-ray studies, 154, 498 MgIn₂S₄ microcrystals on wide bandgap MgIn₂O₄, semiconductor sensitization by, **154**, 476 Na₃In(PO₄)₂, polymorphous modifications, structure, **149**, 99 LnNiIn₂ (Ln = Pr,Nd,Sm), synthesis and crystal structure, **152**, 560 PrRhIn, synthesis and properties, **152**, 560 Ti₃Rh₂In₃, structure, chemical bonding, and properties, **150**, 19 Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55 ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, structures and physical properties, **155**, 312 (ZnO)₅In₂O₃, isoelectronically substituted, structure and thermoelectric transport properties, 150, 221 ZrIn₂, structure, chemical bonding, and properties, **150**, 19 Inert pair effects in lead and tin dihalides: crystal structure of SnBr₂, 149, 28 Infrared spectroscopy apatite-related phosphates, 149, 133 $B_{48}Al_3C_2$, phonon spectra and frequencies, 154, 75 N-benzyl piperidinium dihydrogenmonophosphate, 155, 298 Bi₂TeO₅, Bi₂Te₂O₇, and α- and β-Bi₂Te₄O₁₁, **152**, 392 boron carbide enriched in ¹⁰B, ¹¹B, and ¹³C isotopes, phonon spectra, **154**, 79 N,N'-dimethylpiperazinium(2+) selenate dihydrate, **150**, 305 intercalation compound of 1,10-phenanthroline with layered MnPS₃, $\rm K_{0.3}MoO_3$, electromodulated transmission spectrum, **155**, 105 $\rm LiH_5TeO_6$, **150**, 410 LiIn(MoO₄)₂, 154, 498 metal hexaborides, 154, 87 Na₃In(PO₄)₂ polymorphous modifications, **149**, 99 Ni effects on calcium phosphate formation, 151, 163 piperazinium(2+) selenate monohydrate, 150, 305 seven-coordinated diaquasuccinatocadmium(II) bidimensional polymer, 153, 1 vanadyl phosphate intercalated with acetone, 150, 356 Inorganic polymers with organic spacers search criteria and design principles for functional crystals, 152, 191 Insulator-metal transition Ln_{0.4}Ca_{0.6}MnO₃ rich in Mn(IV), induction by Ru doping, 151, 330 Interband transitions B₄₈Al₃C₂, **154**, 75 metal hexaborides, 154, 87 Interdiffusion paracrystal formation from $Ni_{1-x}O$ and CaO, 152, 421 Intergrowth phases Cs₇Au₅O₂, 155, 29 Ga₂O₃-In₂O₃-SnO₂ system, tunneled structures, **150**, 294 $Rb_5Au_3O_2$ and $Rb_7Au_5O_2$, **155**, 29 Interlayer charge transfer in 2D misfit compounds, quantitation via bond valence calculation, 155, 1 Interlayer short-range order Gd vacancies in Cu₂Gd_{2/3}S₂, 152, 332 Iodine alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271 Ba₃SiI₂, synthesis, structure, and properties, **152**, 460 Cd₅(PO₄)₃I apatite, incommensurate modulation, **150**, 154 $Hg_3Se_2I_2$ and $Hg_3S_2I_2$, synthesis and crystal structure, 151, 73 Ni(NH₃)₂I₂, preparation and crystal structures, **152**, 381 Ion exchange hydroxide ions for fluoride ions in calcium fluorapatite, **151**, 65 topotaxial, hydroxyapatite for chlorapatite, effects of metal ions, **154**, 569 Ionic conductivity AgTi₂(PS₄)₃, **153**, 55 Bi₂Pb₂O₇ with pyrochlore structure, **149**, 314 Li⁺ in β' - and β -LiZr₂(PO₄)₃, neutron diffraction study, 152, Na₂SO₄-Al₂O₃ composite electrolytes, mechanism and role of preparatory parameters, **153**, 287 Iridium $BaIr_{1-x}Co_xO_{3-\delta}$ (x = 0.5, 0.7, 0.8) perovskites, structural chemistry and electronic properties, **152**, 361 IrIn₂, structure, chemical bonding, and properties, **150**, 19 Iron boron doped with, physical-mechanical characteristics, 154, 188 Ca₂Fe₂O₅, ¹¹⁹Sn dopant atoms in, hyperfine interactions and dynamic characteristics, **151**, 313 CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483 $[C_2N_2H_{10}]_2$ Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, synthesis and structure, **150**, 159 Cu₂FeSn₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363 Cu₂FeTi₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363 ACu₃Ti₃FeO₁₂, dielectric constants, **151**, 323 Dy₆FeTe₂, synthesis, structure, and bonding, **155**, 9 (Fe(CN)₆)³⁻, Mg–Al hydrotalcites exchanged with, properties, effects of guest–host interactions, **155**, 332 Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, **152**, 229 A_2 FeNbO₆ (A = Sr,Ba) perovskites, magnetic susceptibility and Mössbauer spectroscopy, **154**, 591 α-Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, structural and magnetic properties, neutron diffraction and Mössbauer spectroscopic studies, 151, 157 FeOF, rutile-type, oxygen/fluorine ordering in, electron diffraction and crystal chemical studies, 155, 359 Fe(II)-1,10-phenanthroline complexes, anomalous spin crossover associated with mechanical strain, role of NCS⁻ and PF₆⁻ counterions. **153**, 82 β-Fe₂(PO₄)O and Fe₄(PO₄)₃(OH)₃, solid solution series between, synthesis and phase characterization, **153**, 237 FePS₃, layered compound, intercalation reaction with 1,10-phenanthroline, **150**, 258 FeZn₁₀ and Fe₁₃Zn₃₉, synthesis, crystal structure, and electronic and bonding analysis, **151**, 85 (H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, **152**, LiFe_{1-x}Co_xO₂ ($0 \le x \le 1$), magnetic properties, effect of Co, **154**, 451 Li-Mn-Fe-O spinels, Li ion distribution in, computer modeling, **153**, 310 LuFeO₃(ZnO)_m, charge distribution analysis: effect of coordination polyhedra shape on cation distribution, **150**, 96 magnetic iron oxide/mullite nanocomposite with stability up to $1400~^{\circ}\text{C}$, 155, 458 Mg-Fe-O system, phase stability, 149, 33 [NH₃(CH₂)₃NH₃]_{0.5}[Fe(OH)AsO₄], synthesis and characterization, **155**, 37 Ni_{1-x}Cu_xFeAlO₄, Mössbauer effect study, **149**, 434 $Pr_{1-x}Sr_xFeO_{3-\delta}$, structure and magnetism, **150**, 233 β -rhombohedral boron doped with, thermoelectric properties, **154**, 13 Sm_{1/3}Sr_{2/3}FeO_{3- δ}, charge ordering and magnetotransport transitions, **153**, 140 $Sr_2Fe_2O_5$, structural phase transition under high pressure, 155, 381 $Sr_nFe_nO_{3n-1}$ ($n=2,4,8,\infty$) perovskites, oxygen-vacancy-ordered crystal structure, evolution and relationship to electronic and magnetic properties, 151, 190 Sr₄Fe₂O₆CO₃, synthesis, crystal structure, and magnetic order, **152**, 374 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x=1,1.5,2), Ruddlesden-Popper phases, properties, **155**, 96 UFe₅Sn, synthesis, crystal structure, and magnetic properties, **154**, 551 zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen) as structure directors for, **152**, 286 (ZrO₂)_{0.8}-(α-Fe₂O₃)_{0.2} powder for gas sensing applications, mechanical alloying and thermal decomposition, **155**, 320 4-Isocyano-3,5-diisopropylbenzonitrile molecular and extended Ag(I) complexes, synthesis and structures, 152, 247 Isopropanolamine racemic, as solvent and template for synthesis of $[NH_3CH_2CH(OH)CH_3]_3 \cdot Al_3P_4O_{16}$, 151, 145 Itinerant-electron magnetism $Sm_{(1-x)}Gd_xTiO_3$, 154, 619 J Jahn-Teller distortion Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}Q_2$ (Q = S,Se), 153, 26 Κ Kinetics phase transformations induced by ball-milling in anatase TiO_2 , 149, 41 L Ladder-like coordination polymers Cu(II)-containing, self-assembly, structures, and magnetic properties, 152, 183 Landau theory symmetry-breaking transitions from GdCuAs₂ through GdCuAs_{1.15}P_{0.85} to GdCuP_{2.20}, **155**, 259 Lanthanum $BaLa_2MnS_5$, crystal structure and magnetic properties, 153, 330 $BaLaMRuO_6$ (M=Mg,Zn), atomic and magnetic long-range ordering in, 150, 383 ${\rm Bi_{0.775}La_{0.225}O_{1.5}}$ of rhombohedral Bi–Sr–O type, structure and conductivity optimization by polycationic substitutions for La, **149**, 341 Bi_{1-y}La_yO_{1.5} monoclinic solid solution, identification and structural relationship to rhombohedral Bi-Sr-O type, **151**, 281 $Bi_{4-x}La_xTi_3O_{12}$ (x = 1,2), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 K₂SrLaTi₂TaO₁₀ · 2H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46 $La_3Al_{0.44}Si_{0.93}S_7$, crystal structure, **155**, 433 LaB_6 chemical vapor deposition, thermodynamic estimation, **154**, 157 floating zone growth and high-temperature hardness, **154**, 238 interband transitions, IR-active phonons, and plasma vibrations, **154**, 87 LaBaCuGaO₅, phase transition induced by high pressure, **155**, 372 La₃BSi₂O₁₀, crystallization and structural characteristics, **154**, 312 LaB_6 –(Ti,Zr) B_2 alloys, eutectic crystallization, **154**, 165 ($La_{1-x}Ca_x$)CrO₃, chemical and thermal expansion, **149**, 320 La_{0.4}Ca_{0.6}MnO₃, Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, **151**, 330 La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, structure and magnetic properties, 152, 503 LaCoO₃-LaMnO₃-BaCoO_z-BaMnO₃ system, phase equilibria, **153**, 205 LaCrO₃, structural phase transition, neutron powder diffraction study, 154, 524 La_{1.85}^{3,8}M_{0.15}²CuO₄ superconductors, true tolerance factor effects in, 155, 138 La₂CuO₄, extended magnetic solids, spin exchange interactions in, 151, 96 La₅Cu₆O₄S₇, synthesis, structure, electrical conductivity, and band structure, **155**, 366 LaCu₃Ti₃FeO₁₂, dielectric constant, **151**, 323 La_{2/3}Cu₃Ti₄O₁₂, dielectric constant, 151, 323 $\text{La}_{1-x}\text{Eu}_x\text{NiO}_3$ (0 $\leq x \leq$ 1), metal-insulator transition and magnetic properties, 151, 1 $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O$ ($M = K, NH_4$), crystal structure and thermal behavior, **150**, 81 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, **155**, 280 La-Mn-O at 1100°C, phase equilibria, 153, 336 La₅Mo₃₂O₅₄, with *trans*-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, synthesis, structure, and properties, **152**, 403 $La_{\sim 10.8}Nb_5O_{20}S_{10}$, synthesis and structure, 152, 348 $\text{La}_{2-x}\text{Nd}_x\text{CuO}_4$ (0.6 $\leq x \leq$ 2), pressure-induced phase transitions, **151.** 231 $\text{La}_3\text{Ni}_2\text{O}_7$, neutron diffraction study: structural relationships among phases $\text{La}_{n+1}\text{Ni}_n\text{O}_{3n+1}$ (n=1,2,3), **152**, 517 LaPdGe, order of Pd and Ge atoms in, 154, 329 LaP₅O₁₄, crystal structure and magnetic properties, **150**, 377 $LaM_4^{2+}(PO_4)_3O$ ($M^{2+}=Ca,Sr$), synthesis and characterization, **149**, La_{0.5}Pr_{0.5}CrO₃, magnetization reversal, **155**, 447 $La_5Re_3MnO_{16}$, synthesis, structure, and magnetic behavior, **151**, 31 $La_{4.87}Ru_2O_{12}$ and $La_7Ru_3O_{18}$, geometric frustation in, **155**, 189 $La_5Si_2BO_{13}$, synthesis and neutron diffraction study, **155**, 389 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3~(0 \le x \le 1)$ solid solutions, magnetic properties, 153, 145 $\text{La}_{1-x}\text{Sr}_x\text{Cr}_{1-x}\text{Ti}_x\text{O}_3$ perovskite series, structural characterization, 155, 455 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, synthesis and crystal structure, 149, 189 La_{0.7}Sr_{0.3}MnO_{3- δ} \square_{δ} (0 \leq δ \leq 0.15), physical properties, effects of oxygen nonstoichiometry, **151**, 139 $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, synthesis and characterization, 153, 34 LaTe₂, crystal and electronic band structure, 149, 155 LaVO₄, hydrothermal synthesis and crystal structure, 152, 486 LaV₃O₉, hydrothermal synthesis and crystal structure, **152**, 486 La_xWO₃ bronze synthesized under high pressure, X-ray diffraction and electron microscopy, **154**, 466 site preference in hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂], 149, 391 $Sr_{1-3x/2}La_xTiO_3$, A-site cation-vacancy ordering in, HRTEM study, 149, 360 Tl(La₂Sr₂)Ni₂O₉, synthesis and structure, **150**, 1 Leaching from $BaCa_{0.393}Nb_{0.606}O_{2.91}$ in aqueous media, resulting amorphization at room temperature, **149**, 262 Lead Bi₂Pb₂O₇ with pyrochlore structure, hydrothermal synthesis and characterization, **149**, 314 $Ca_{2-x}Mg_xPb$, structure, resistivity, and magnetic susceptibility, 152, 474 Ce_{1-x}PbVO_{4-0.5x} with zircon-type structure, preparation by solidstate reaction in air, **153**, 174 Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS glasses, magnetic susceptibility and local structure, **152**, 388 Li_{0.5}Pb_{1.75}GeS₄, Na_{0.5}Pb_{1.75}GeS₄, and Na_{1.5}Pb_{0.75}PSe₄ with cubic structure, flux synthesis and isostructural relationships, **153**, 158 Pb₅Al_{2.96}Cr_{0.04}F₁₉, ferroelastic phase, crystal structure at 300 K, **155**, $PbBi_6O_4(XO_4)_4$ (X = P,V,As), existence of, **154**, 435 Pb₅Bi₁₈P₄O₄₂, crystal structure, **151**, 181 PbBr₂ and PbCl₂, inert pair effects: crystal structure of SnBr₂, 149, 28 Pb₇F₁₂Cl₂, disordered modification of, synthesis and structure, **149**, 56 $Pb(Mg_{1/3}Nb_{2/3})O_3$, formation via mechanically activated nucleation and growth, **154**, 321 $0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O_3-0.6Pb(Zn_{1/3}Nb_{2/3})O_3]-0.1PbTiO_3,$ formation via mechanically activated nucleation and growth, **154**, 321 (Pb(Mn,Nb)_{0.5}S_{1.5})_{1.15} NbS₂, interlayer charge transfer quantitation via bond valence calculation, 155, 1 [Pb₆O₄](OH)(NO₃)(CO₃), crystal structure, **153**, 365 PbS nanoparticles, sonochemical synthesis, 153, 342 [(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370 PbVO₂PO₄, α -layered and β -tunnel structures, **149**, 149 Pb(Zr_{0.52}Ti_{0.48})O₃, formation via mechanically activated nucleation and growth, **154**, 321 Linearized muffintin orbital method electronic band structure of CdCr₂Se₄ spinels, 155, 198 Lithiation reversible, vacant thiospinel $(In_{0.5}\square_{0.5})[In_{1.5}Sn_{0.5}]S_4$, pressure-sensitive modeling, **152**, 533 Lithium BaLiF₃ doped with Ce³⁺, optical spectroscopy properties and charge compensation, **150**, 178 BPO₄ doped with, ionic distribution in, NMR study, 153, 282 hydrated lithium vanadium bronze, synthesis, 149, 443 insertion into Mg₂Si, reaction mechanism, 153, 386 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, 155, 280 $\text{LiFe}_{1-x}\text{Co}_x\text{O}_2$ (0 $\leq x \leq$ 1), magnetic properties, effect of Co, **154**, 451 LiH_5TeO_6 , preparation, crystal structure, vibrational spectra, and ther- LiIn(MoO₄)₂, vibrational and X-ray studies, 154, 498 Li-Mn-Fe-O spinels, Li ion distribution in, computer modeling, 153, 310 LiMn₂O₄-based spinels mal behavior, 150, 410 Ni-stabilized, electrochemical insertion properties of, effects of partial acid delithiation, **150**, 196 origin of 3.3 V and 4.5 V steps, TEM studies of, 155, 394 Li_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Na_{0.5}Pb_{1.75}GeS₄, **153**, 158 Li₂S, reversible antifluorite to anticotunnite phase transition at high pressures, **154**, 603 LiTi₂O₄ superconductor and related compounds, Li site occupancy in, NMR study, 152, 397 Li₂Ti₃O₇, H phase, engineered scavenger compound, structural characterization, 152, 546 Li_{2+x}Ti₃O₇, electrochemically obtained, structural study, **153**, 132 β-LiVOAsO₄, synthesis, structure, and physical studies, **150**, 250 $LiZr_2(PO_4)_3$, β' and β phases, order-disorder and mobility of Li^+ in, neutron diffraction study, **152**, 340 Local spin density functional theory A_2T_2 Sn (A =Ce,U; T =Ni,Pd): band magnetism calculations, **149**, 449 Lone pair electrons effect on TIF crystal structure, 150, 266 Pb₅Bi₁₈P₄O₄₂, location, **151**, 181 role in conductivity properties of Bi-La-based oxide conductors of rhombohedral Bi-Sr-O type with polycationic substitutions for La, 149, 341 Low-connectivity nets three-dimensional, basic geometries, 152, 3 Luminescence Ag(I) in $Na_{2-x}Ag_xZnP_2O_7$, **149**, 284 $BaHf_{1-x}Zr_x(PO_4)_2$: UV emission under X-ray excitation, 155, 229 BaLiF₃ doped with Ce³⁺, 150, 178 CaIn₂O₄ phosphors activated by Pr, 155, 441 $Cu_{0.5}^{I}Mn_{0.25}^{II}Zr_{2}(PO_{4})_{3}$ Nasicon-type phosphate, 152, 453 Eu²⁺ in doped crystalline SrAl₂B₂O₇, 150, 404 Eu³⁺ in Eu₃(BO₃)₂F₃ and Ba₂Eu(CO₃)₂F₃: evidence of anionic disorder in fluoride borate, **153**, 270 β -rhombohedral boron of high purity, **154**, 68 TlZn(PO₃)₃, 154, 584 ZnGa₂O₄ self-activated phosphors, systematic tuning by Cd²⁺ substitution, **150**, 204 Lutetium Ba₂LuTaO₆, Yb³⁺ doped in, EPR study, **150**, 31 CaLuPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, 150, 112 Lu_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bonding, **152**, 478 LuFeO₃(ZnO)_m, charge distribution analysis: effect of coordination polyhedra shape on cation distribution, **150**, 96 Lu₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, 152, 441 (Y,Lu)Al₃(BO₃)₄ solid solutions, crystal growth and characterization, 154, 317 2,6-Lutidine intercalation into α -titanium hydrogenphosphate, structural and calorimetric study, **154**, 557 Μ ``` Magnesium ``` BaLaMgRuO₆, atomic and magnetic long-range ordering in, **150**, 383 BiMg₂VO₆, variable-temperature X-ray diffraction study, **149**, 143 $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), structure, resistivity, and magnetic susceptibility, **152**, 474 CaO-MgO solid solutions, mixing properties, semi-empirical and ab initio calculations, 153, 357 Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, 152, 526 Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, **153**, 185 In_2O_3 – TiO_2 –MgO system at 1100 and 1350°C, phase relations, **150**, 276 Mg^{2+} , α - Fe_2O_3 substituted with, structural and magnetic properties, neutron diffraction and Mössbauer spectroscopic studies, **151**, 157 Mg-Al hydrotalcites, anion-exchanged, properties of, effects of guest-host interactions, **155**, 332 Mg:Al ratio, effect on borate/nitrate or silicate/nitrate exchange in hydrotalcite, **151**, 272 Mg-Fe-O system, phase stability, 149, 33 MgIn₂S₄ microcrystals on wide bandgap MgIn₂O₄, semiconductor sensitization by, **154**, 476 MgO-MnO solid solutions, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357 MgOs₃B₄, channel structure, 154, 232 Mg₂Si, Li insertion into, reaction mechanism, 153, 386 $Na_{3.64}Mg_{2.18}(P_2O_7)_2$, crystal structure, 152, 323 $Pb(Mg_{1/3}Nb_{2/3})O_3$, formation via mechanically activated nucleation and growth, **154**, 321 $0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O_3-0.6Pb(Zn_{1/3}Nb_{2/3})O_3]-0.1PbTiO_3$, formation via mechanically activated nucleation and growth, **154**, 321 Magnetic entropy rare-earth hexaborides, 154, 275 Magnetic exchange $Sm_{(1-x)}Gd_xTiO_3$, **154**, 619 Magnetic nanocomposite iron oxide/mullite with stability up to 1400 °C, 155, 458 Magnetic order Pr_{1-x}Ba_xCoO₃ perovskite, magnetic circular dichroism spectroscopic study, **152**, 577 short-range ordering induced by isovalent substitution of Sr^{2+} for Ba^{2+} in $BaMnS_2$, 155, 305 $Sm_{(1-x)}Gd_xTiO_3$, **154**, 619 Sr₄Fe₂O₆CO₃, 152, 374 Magnetic properties Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, 152, 159 Ba₂CoNbO₆ perovskite, 151, 294 BaMnS₂, **155**, 305 $BaLn_2MnS_5$ (*Ln* = La,Ce,Pr), **153**, 330 Ba₃SiI₂, **152**, 460 $Ba_{0.93}Sr_{0.07}MnS_2$, 155, 305 $R_5B_2C_5$ (R = Y,Ce-Tm), **154**, 286 borocarbides Ln-M-B-C (Ln = rare earths, Y; M = Ni,Pd), 154, 114 Ca_{3.1}Cu_{0.9}RuO₆, **153**, 254 $Ce_{1-x}Nd_xTiO_3$, **153**, 145 RCo_4B (R = Y,Pr,Nd,Sm,Gd,Tb), **154**, 242 $(Cr_{1-x}Ni_x)_3Te_4$ with pseudo-NiAs-type structure, 154, 356 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), **152**, 174 Cu(II) ladder-like coordination polymers, 152, 183 Eu₁₆Bi₁₁, **155,** 168 Eu₁₆Sb₁₁, **155**, 168 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157 GdCuAs₂, GdCuAs_{1.15}P_{0.85}, and GdCuP_{2.20}, 155, 259 $GdNi_3X_2$ (X = Al,Ga,Sn), relationship to synthesis conditions, 150, 62 intercalation compound of 1,10-phenanthroline with layered MnPS₃, 150, 281 IrIn₂, **150**, 19 iron oxide/mullite nanocomposite, 155, 458 La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, 152, 503 La₅Re₃MnO₁₆, **151**, 31 La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈, 155, 189 $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_{3-\delta}\square_{\delta}$ (0 \leq δ \leq 0.15), effects of oxygen non-stoichiometry, **151**, 139 $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, 153, 34 $LiFe_{1-x}Co_xO_2$ (0 $\le x \le 1$), effect of Co, **154**, 451 β -LiVOAsO₄, **150**, 250 RE₅Mo₃₂O₅₄ (RE = La,Ce,Pr,Nd) with trans-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, **152**, 403 Na₄Co₃H₂(PO₄)₄ · 8H₂O, 149, 292 $Nd_4Co_3O_{10+\delta}$ and $Nd_4Ni_3O_{10-\delta}$, **151**, 46 $R_2 \text{NiB}_{10}$ (R = Y,Ce-Nd,Sm,Gd-Ho), **154**, 246 pillared 3D Mn(II) coordination network with rectangular channels, 152, 152 Pr_{1-x}Ba_xCoO₃ perovskite, magnetic circular dichroism spectroscopic study, **152**, 577 PrRhIn, 152, 560 $Pr_{1-x}Sr_xFeO_{3-\delta}$, **150**, 233 Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru, correlation with micronanostructures, **155.** 15 $SmNi_{1-x}Co_xO_3$, relationship to structure, **150**, 145 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, 153, 140 A_2T_2 Sn (A = Ce,U; T = Ni,Pd), local spin density functional calculations, **149**, 449 Sr_{4.5}Cr_{2.5}O₉, **154**, 375 $Sr_nFe_nO_{3n-1}$ ($n=2,4,8,\infty$), oxygen-vacancy-ordered perovskites, relationship to crystal structure, **151**, 190 Sr₂NiN₂, **154**, 542 $Sr_{11}Re_4O_{24}$ double oxide, 149, 49 $Ln_{1-x}Ln'_x \text{TiO}_3$ (Ln and $Ln' = \text{La-Sm}; 0 \le x \le 1$) solid solutions, 153, 145 $Ln_{2/3}$ TiO₃ (Ln = Pr, Nd), **149**, 354 Ti₃Rh₂In₃, 150, 19 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La, Pr, Nd, Sm, Eu, Gd), 150, 1 UFe₅Sn, 154, 551 $(V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\}\cdot 2H_2O, 155, 238$ $Ln_7VO_4Se_8$ (Ln = Nd,Sm,Gd), 154, 564 YMn₂D_{1.15}, **154**, 398 ZrIn₂, 150, 19 Magnetic solids extended, spin exchange interactions in $KCuF_3$, K_2CuF_4 , $KNiF_3$, K_2NiF_4 , La_2CuO_4 , and Nd_2CuO_4 , 151, 96 Magnetic structure Ca_{3.1}Cu_{0.9}RuO₆, **153**, 254 K₂MnF₅·H₂O, neutron diffraction study, **150**, 104 Sr₄Fe₂O₆CO₃, **152**, 374 Magnetic susceptibility Ba₂YbTaO₆ with ordered perovskite structure, **150**, 31 $CaErPt_3Sn_5 \ and \ CaLuPt_3Sn_5, with \ Yb_2Pt_3Sn_5 - type \ structure, \textbf{150,} \ 112$ $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), **152**, 474 CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, **154**, 483 CaTmPt₃Sn₅ and CaYbPt₃Sn₅, with Yb₂Pt₃Sn₅-type structure, **150**, 112 Ce₂Ni₂Cd, **150**, 139 A_2 FeNbO₆ (A = Sr,Ba) perovskites, **154**, 591 $Ga_2S_3(As_2S_3,PbS)$ - GeS_2 -MnS glasses, 152, 388 $(Hg,M)Sr_2(Ln,Ce)_2Cu_2O_2$ 1222-type superconductors, **154**, 488 $La_{1-x}Eu_xNiO_3 \ (0 \le x \le 1), \ 151, \ 1$ $La_{n+1}Ni_nO_{3n+1}$ (n = 2,3), **152**, 517 Na₂Ti₂Sb₂O, relationship to structure, powder neutron diffraction study, **153**, 275 RP_5O_{14} (R = La, Nd, Sm, Eu, Gd), 150, 377 R_2 Ru₂O₇ (R = rare earths) pyrochlores, ac susceptibility, **152**, 441 Sm_(1-x)Gd_xTiO₃, **154**, 619 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x=1,1.5,2) Ruddlesden-Popper phases, **155**, 96 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x=0.87), **152**, 540 (VO)₂P₂O₇ phase grown at 3 GPa, 153, 124 Magnetization La_{0.5}Pr_{0.5}CrO₃, reversal of, **155**, 447 Magnetoresistance colossal, see Colossal magnetoresistance Sr₂CrMoO₆ double perovskite, 155, 233 Magnetotransport transitions $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, **153**, 140 Manganese BaMnS₂, magnetic properties, 155, 305 BaLn₂MnS₅ (Ln = La,Ce,Pr), crystal structures and magnetic properties. 153, 330 Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, **155**, 305 1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi–Sr ordering, synthesis and characterization, **151**, 210 Ln_{0.4}Ca_{0.6}MnO₃ (Ln = La,Pr,Nd,Sm), Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330 CaMnO₃, Mn site-doped, colossal magnetoresistance, 149, 203 CaO-MnO solid solutions, mixing properties, semi-empirical and ab initio calculations, 153, 357 (Cd_{1-x}Mn_x)Mn₂O₄, synthesis, stoichiometry, and electrical transport properties, 153, 231 $Cd_{1-\delta}Mn_2O_y$, crystal chemistry, Mn–K edge XAS study, **149**, 252 Cs_2KMnF_6 , phase transition crystal structures of low- and high-temperature modifications, 150, at high pressure, 153, 248 $Cu_{0.5}^{I}Mn_{0.25}^{I}Zr_{2}(PO_{4})_{3}$ Nasicon-type phosphate, structure and luminescence, **152**, 453 Ga₂S₃(As₂S₃,PbS)-GeS₂-MnS glasses, magnetic susceptibility and local structure, 152, 388 K₂MnF₅·H₂O, neutron diffraction study, **150**, 104 La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, structure and magnetic properties, **152**, 503 LaCoO₃-LaMnO₃-BaCoO₂-BaMnO₃ system, phase equilibria, **153**, 205 La-Mn-O at 1100°C, phase equilibria, 153, 3367 La₅Re₃MnO₁₆, synthesis, structure, and magnetic behavior, 151, La_{0.7}Sr_{0.3}MnO_{3- δ} \Box_{δ} (0 $\leq \delta \leq$ 0.15), physical properties, effects of oxygen nonstoichiometry, **151**, 139 $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, synthesis and characterization, **153**, 34 Li-Mn-Fe-O spinels, Li ion distribution in, computer modeling, 153, 310 LiMn₂O₄-based spinels Ni-stabilized, electrochemical insertion properties of, effects of partial acid delithiation, **150**, 196 origin of 3.3 V and 4.5 V steps, TEM studies of, 155, 394 manganites, origin of bulk magnetoresistivity, 155, 116 MgO-MnO solid solutions, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357 MnCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113 Mn_3Ga_5 pseudo-decagonal approximant, preparation and crystal structure, 153, 398 MnO-NiO solid solutions, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357 Mn-phenanthroline complexes, functionalized MCM-41 containing, synthesis and characterization, **152**, 447 MnPS₃, intercalation compound with 1,10-phenanthroline, synthesis, characterization, and magnetic properties, **150**, 281 (Pb(Mn,Nb)_{0.5}S_{1.5})_{1.15} NbS₂, interlayer charge transfer quantitation via bond valence calculation, **155**, 1 pillared 3D Mn(II) coordination network with rectangular channels, synthesis, X-ray structure, and magnetic properties, **152**, 152 $(Pr_4N)_2Mn(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O (X = S,Se)$, synthesis and structure, **153**, 195 (Pr₄N)₂Mn(H₂O)₄[Re₆S₈(CN)₆], synthesis and structure, **153**, 195 Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru, micronanostructures, correlation with magnetic transitions, 155, 15 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}Q_2$ (Q=S,Se), synthesis and structure, 153, 26 $SrMn_{1-y}(B,C)_yO_{3-\delta}$, order-disorder phenomena, **149**, 226 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x=1,1.5,2), Ruddlesden-Popper phases, properties, **155**, 96 YMn₂D_{1.15}, structural and magnetic properties, **154**, 398 YMn₂D₂ single phase, synthesis, study by *in situ* neutron diffraction, **150**, 183 Mass spectrometry sputtered neutral, cation loss from BaCa_{0.393}Nb_{0.606}O_{2.91} in aqueous media leading to amorphization at room temperature, **149**, 262 ACM-41 functionalized, with Cu- and Mn-phenanthroline complexes, synthesis and characterization, **152**, 447 Mechanical activation complex perovskite formation via nucleation and subsequent growth, **154,** 321 Mechanical alloying La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by, structure and magnetic properties, 152, 503 $(ZrO_2)_{0.8}$ - $(\alpha$ -Fe₂O₃)_{0.2} powder for gas sensing applications, **155**, 320 Mechanical properties Fe-doped boron, **154**, 188 Mo₂NiB₂ boride base cements with Cr and V additions, effects of Mo/B atomic ratio, **154**, 263 strength and creep in α -AlB₁₂ and γ -AlB₁₂, **154**, 191 Mechanical strain in Fe(II)-1,10-phenanthroline, associated anomalous spin crossover, role of NCS⁻ and PF₆⁻ counterions, **153**, 82 Mechanochemical reactions polymeric oxovanadium(IV) complexes with Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines, 153, 9 in Sn-Zn-S system, 153, 371 Mercury Cs₅Hg₁₉, synthesis and structure, 149, 419 A_3 Hg₂₀ (A =Rb,Cs) and A_7 Hg₃₁ (A =K,Rb), synthesis and structure, **149**, 419 Hg₆As₄BiCl₇ built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, **154**, 350 HgCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113 HgS nanoparticles, sonochemical synthesis, 153, 342 Hg₆Sb₄BiBr₇ and Hg₆Sb₅Br₇, built of polycationic mercury-pnictide framework with trapped anions, synthesis and crystal structure, 154, 350 Hg₃Se₂I₂ and Hg₃S₂I₂, synthesis and crystal structure, 151, 73 (Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z, 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 HgTe, preparation by microwave heating, 154, 530 K₃Hg₁₁, synthesis and structure, **149**, 419 mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, **153**, 106 Metal carboxylates microporous materials, synthesis and gas occlusion properties, **152**, 120 Metal-insulator transition $La_{1-x}Eu_xNiO_3 \ (0 \le x \le 1), 151, 1$ LnNiO₃ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via different precursors, 151, 298 pure and V-doped β -rhombohedral boron, 154, 307 $SmNi_{1-x}Co_xO_3$, **150**, 145 in strongly correlated oxides, 155, 177 Metallacrowns in preparation of chiral solids, 152, 68 Metallic powders preparation in polyol media, thermodynamic approach, **154**, 405 Metalloboranes solid state structures, molecular models of, 154, 110 Metalloporphyrins microporous materials, construction, 152, 87 Metal-nonmetal transition in Ru pyrochlores, structural studies, 151, 25 Metamagnetism LiFe_{1-x}Co_xO₂ ($0 \le x \le 1$), effect of Co, **154**, 451 Metastable phases Bi₂Pb₂O₇ with pyrochlore structure, hydrothermal synthesis and characterization, **149**, 314 SrV₄O₉, synthesis and crystal structure, 149, 414 Methane mixture with H₂, temperature-programmed reaction with, in synthesis of tungsten carbides, **154**, 412 Methylamines intercalation into TiS2, 155, 326 Methylhydrazine boron nitride film preparation by MOCVD with, 154, 101 Microhardness $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, **154**, 45 Microwave heating in preparation of Cu_{2-x} Te and HgTe, 154, 530 Misfit compounds Franckeite-type [(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370 Mixing properties MO-M'O solid solutions, semi-empirical and *ab initio* calculations, **153**, 357 Modulated photocurrent pure and V-doped β -rhombohedral boron, measurements, **154**, 307 Molecular dynamics BN nanotubes, 154, 214 evaluation of thermodynamic properties of nonideal solid solutions, **153**, 118 Molecular simulation tantalum chloride-graphite intercalation compound structure, **149**, 68 vanadyl phosphate intercalated with acetone, **150**, 356 Molybdenum Bi₂MoO₆ catalyst, high-temperature incommensurate-to-commensurate phase transition, **155**, 206 Bi_2O_3 -MoO₃ system, EDS and TEM study: compounds with structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, **149**, 276 (Cr_{1-x}Mo_x)₃B₄ large crystals, synthesis and analysis, 154, 45 [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141 discrete Mo oxide-based building blocks as synthons, in control of growth of solid-state materials, **152**, 57 Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, 152, 229 (Hg,Mo)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 H_xMoO₃ bronzes, CDW superstructures, 149, 75 (H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, **152**, 229 K_{0.3}MoO₃, interactions of sliding charge-density waves with phonons, **155**, 105 K_{1.8}Mo₉S₁₁, band structure, **155**, 124 LiIn(MoO₄)₂, vibrational and X-ray studies, 154, 498 Mo_{0.16}Bi_{0.84}O_{1.74}, high-temperature cubic fluorite-type phase with 3D incommensurate modulation, synthesis and structure, **152**, 573 Mo(II) dicarboxylates, microporous materials, synthesis and gas occlusion properties, 152, 120 Mo ions in rutile TiO₂, redox properties, XRD and EPR study, **152**, 412 Mo₂NiB₂ boride base cements with Cr and V additions, mechanical properties and structure, effects of Mo/B atomic ratio, **154**, 263 $RE_5 Mo_{32}O_{54}$ (RE = La, Ce, Pr, Nd) with trans-capped Mo_8 octahedral clusters and $Mo_7 - Mo_{10} - Mo_7$ triclusters, synthesis, structure, and properties, **152**, 403 $A_2\text{Mo}_9\text{S}_{11}$ (A = K,Nb), band structure, **155**, 124 $[Mo_2S_2O_2]^{2+}$ molecular building block, preparation and self-condensation, **152**, 78 $(NH_4)_{0.13}V_{0.13}Mo_{0.87}O_3$ solid solution, properties, 152, 353 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural study, **155**, 250 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n=1 to 4), superconducting cluster compounds, synthesis, structure, and theoretical studies, **155**, 417 Sr_2CrMoO_6 double perovskite, magnetoresistance, 155, 233 Mössbauer spectroscopy CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, 154, 483 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, **150**, 159 A_2 FeNbO₆ (A = Sr,Ba) perovskites, **154**, 591 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157 InSn oxide powders, 154, 444 manganites: origin of bulk magnetoresistivity, 155, 116 $Ni_{1-x}Cu_xFeAlO_4$, **149**, 434 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$: charge ordering and magnetotransport transitions, 153, 140 ¹¹⁹Sn dopant atoms in Ca₂Fe₂O₅, **151**, 313 $\rm Sr_2Fe_2O_5$: structural phase transition under high pressure, **155**, 381 $\rm Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x=1,1.5,2) Ruddlesden–Popper phases, **155**, 96 Mullite magnetic iron oxide/mullite nanocomposite with stability up to 1400 $^{\circ}$ C, 155, 458 Ν Nanocomposites magnetic iron oxide/mullite with stability up to 1400 $^{\circ}$ C, 155, 458 Nanocrystals Ag_8SnE_6 (E = S,Se) chalcogenides, synthesis and characterization, 149, CdSe, with cubic structure, room-temperature synthesis in aqueous solution, 151, 241 CeO₂, X-ray absorption spectroscopy, 149, 408 Co_{0.844}Se, synthesis in nonaqueous solvent, **152**, 537 Cu₂SnS₃, synthesis, characterization, and properties, 153, 170 metal phosphides (metal = Co,Ni,Cu), solvothermal synthesis, 149, 88 γ-NiSb, synthesis by solvothermal coordination–reduction route at low temperature, 155, 42 ZrO₂, tetragonal-monoclinic transition, crystallite size effect in, XRD and Raman spectroscopic study, 149, 399 Nanoparticles HgS and PbS, sonochemical synthesis, 153, 342 Nanotubes B₉₆ isomers, ab initio study, **154**, 269 BN, structure and mechanisms of growth and formation, **154**, 214 Negative thermal expansion in Y₂(WO₄)₃, **149**, 92 Neodymium Ba₄Nd₂Cd₃Se₁₀, synthesis and structure, **149**, 384 Bi₂Nd₄O₉ monoclinic phase, structure, 153, 30 $Bi_{2-x}Nd_xRu_2O_{7-y}$ (0 < x < 2) pyrochlores, metal–nonmetal transition in, structural studies, **151**, 25 CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483 Ce_{1-x}Nd_xTiO₃, magnetic properties, 153, 145 $\text{La}_{2-x}\text{Nd}_x\text{CuO}_4$ (0.6 $\leq x \leq$ 2), pressure-induced phase transitions, **151**, 231 NdB₆, floating zone growth and high-temperature hardness, 154, 238 Nd_{0.4}Ca_{0.6}MnO₃, Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330 NdCo₄B, magnetic properties, 154, 242 $Nd_4Co_3O_{10+\delta}$ and $Nd_4Ni_3O_{10-\delta}$, crystal structure and properties, 151, $Nd_{1.85}^{3.+}M_{0.15}^{2.+}CuO_4$ superconductors, true tolerance factor effects in, 155, 138 Nd₂CuO₄, extended magnetic solids, spin exchange interactions in, **151**, 96 NdCu₃Ti₃FeO₁₂, dielectric constant, **151**, 323 $NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11-\delta}$ and $NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}$ $O_{14-\delta}$, defect chemistry and electrical properties, **155**, 216 Nd₅Mo₃₂O₅₄, with *trans*-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, synthesis, structure, and properties, **152** 403 Nd₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246 NdNiIn₂, synthesis and crystal structure, 152, 560 NdNiO₃ polycrystalline compounds prepared via different precursors, properties, **151**, 298 NdPdGe, order of Pd and Ge atoms in, 154, 329 NdP₅O₁₄, crystal structure and magnetic properties, 150, 377 Nd₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, 152, 441 $Nd_2(SiO_4)Te$, monoclinic and orthorhombic crystals, structure, 155, 433 Nd_{2/3}TiO₃, synthesis and magnetic properties, **149**, 354 $Nd_{1-x}TiO_3$ perovskites, metal-insulator phenomena, 155, 177 Nd₁₆Ti₅S₁₇O₁₇, synthesis and structure, **152**, 554 Nd₇VO₄Se₈, synthesis and characterization, 154, 564 Nd_xWO₃ bronze synthesized under high pressure, X-ray diffraction and electron microscopy, **154**, 466 $Pr_{1-x}Nd_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145 site preference in hydroxyapatite $[Ca_{10}(PO_4)_6(OH)_2]$, **149**, 391 $Tl(Nd_2Sr_2)Ni_2O_9$, synthesis and structure, **150**, 1 $(Y,Nd)Al_3(BO_3)_4$ solid solutions, crystal growth and characterization, 154, 317 Neopentane system with carbon tetrachloride, thermodynamics, 154, 390 Neutron diffraction, see also Powder neutron diffraction BaBi₃O_{5.5}: crystal growth and structure, 152, 435 CsCo(ND₃)₆(ClO₄)₂Cl₂, single crystal study of orientational disordering between 20 and 290 K, **149**, 60 phase transitions in $CeO_{1.800}$ and $CeO_{1.765}$, 153, 218 YMn₂D_{1.15}, **154**, 398 YMn₂D₂ single phase, synthesis study in situ, 150, 183 Neutron scattering Sr₄Fe₂O₆CO₃, **152**, 374 Nicke Ce₂Ni₂Cd, synthesis, structure refinement, and properties, 150, 139 (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460 $(Cr_{1-x}Ni_x)_3Te_4$ with pseudo-NiAs-type structure, magnetic properties, **154**, 356 Dy₆NiTe₂, synthesis, structure, and bonding, **155**, 9 effects on calcium phosphate formation, 151, 163 GdNi₃X₂ (X = Al,Ga,Sn), structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, **150**, 62 hydrogen bond-directed hexagonal frameworks based on 1,3,5-benzenet- ricarboxylate, **152**, 261 KNiF₃ and K₂NiF₄, extended magnetic solids, spin exchange interactions in, **151**, 96 $\text{La}_{1-x}\text{Eu}_x\text{NiO}_3$ (0 \leq x \leq 1), metal-insulator transition and magnetic properties, **151**, 1 $\text{La}_3 \text{Ni}_2 \text{O}_7$, neutron diffraction study: structural relationships among phases $\text{La}_{n+1} \text{Ni}_n \text{O}_{3n+1}$ (n=1,2,3), **152**, 517 LiMn₂O₄ spinel oxides stabilized by, electrochemical insertion properties of, effects of partial acid delithiation, **150**, 196 mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 MnO-NiO solid solutions, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357 Mo₂NiB₂ boride base cements with Cr and V additions, mechanical properties and structure, effects of Mo/B atomic ratio, **154**, 263 $Na_{3.64}Ni_{2.18}(P_2O_7)_2$, crystal structure, 152, 323 $Nd_4Ni_3O_{10-\delta}$, crystal structure and properties, 151, 46 RE_5Ni_2X (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; X = Sb,Bi) pnictides, crystal structure and bonding, **152**, 478 R_2 NiB₁₀ (R = Y,Ce-Nd,Sm,Gd-Ho), synthesis, crystal structure, and magnetic and electrical properties, **154**, 246 Ln-Ni-B-C (Ln = rare earths, Y), chemical and superconducting properties, 154, 114 NiCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113 NiCo₂O₄, XRD, XANES, EXAFS, and XPS study, 153, 74 Ni_{1-x}Cu_xFeAlO₄, Mössbauer effect study, **149**, 434 $LnNiIn_2$ (Ln = Pr,Nd,Sm), synthesis and crystal structure, 152, 560 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural study, **155**, 250 $Ni(NH_3)_2X_2$ ($X = Cl_yBr_zI$), preparation and crystal structures, **152**, 381 LnNiO₃ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via different precursors, properties, 151, 298 Ni_{1-x}O/CaO, paracrystal formation upon interdiffusion, **152**, 421 Ni₂P, solvothermal synthesis, 149, 88 γ -NiSb nanocrystals, synthesis by solvothermal coordination–reduction route at low temperature, **155**, 42 A_2Ni_2Sn (A = Ce,U), band magnetism, local spin density functional calculations, **149**, 449 NiTa₂Se₇, with incommensurately modulated low-temperature structure, independent \vec{q} and $2\vec{q}$ distortions in, **153**, 152 α-Ni(VO₃)₂·2H₂O and Ni(VO₃)₂·4H₂O, synthesis and crystal structure, **152**, 511 $Pr_2NiO_{4+\delta},$ oxygen exchange at high temperature and formation of $Pr_4Ni_3O_{10-x},$ 153, 381 $(Pr_4N)_2Ni(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se), synthesis and structure, **153**, 195 $(Pr_4N)_2Ni(H_2O)_4[Re_6S_8(CN)_6]$, synthesis and structure, 153, 195 $SmNi_{1-x}Co_xO_3$, structure, relationship to physical properties, 150, 145 Sr₂NiN₂, synthesis, crystal structure, and physical properties, **154**, 542 Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, **155**, 71 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La, Pr, Nd, Sm, Eu, Gd), synthesis and structure, **150.** 1 UNi_{1.9}Sn single crystals, growth, crystal structure, and thermopower, **149**, 120 #### Niobium Ag₂NbTi₃P₆S₂₅, crystal structure, 153, 55 BaCa_{0.393}Nb_{0.606}O_{2.91}, cation loss in aqueous media leading to amorphization at room temperature, **149**, 262 Ba₂CoNbO₆ perovskite, magnetic transition in, 151, 294 $\text{Bi}_{2-x}\text{Sr}_{2+x}\text{Ti}_{1-x}\text{Nb}_{2+x}\text{O}_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 $Ca_4Nb_2O_9 = 3 \cdot Ca(Ca_{1/3}Nb_{2/3})O_3$, perovskite-like polymorphs, octahedral tilting and cation ordering in, **150**, 43 CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483 CaO:Al₂O₃:Nb₂O₅ system, phase equilibria and dielectric properties, 155, 78 (Cr_{1-x}Nb_x)₃B₄ large crystals, synthesis and analysis, **154**, 45 Cu₄Nb₅Si₄, bonding analysis, 154, 384 A_2 FeNbO₆ (A = Sr,Ba) perovskites, magnetic susceptibility and Mössbauer spectroscopy, **154**, 591 KCa₂Nb₃O₁₀ layered perovskite, crystal structure, 151, 40 $La_{\sim 10.8}Nb_5O_{20}S_{10}$, synthesis and structure, 152, 348 NbB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 Nb₂Mo₉S₁₁, band structure, **155**, 124 Nb₂N_{0.88}O_{0.12}, synthesis and crystal structure, **150**, 36 $Nb_{12}O_{29}$, crystal structure and coexistence of localized and delocalized electrons, **149**, 176 ${ m Nb_7W_{10}O_{47}}$ tetragonal bronze-type phase, superstructure and twinning, 149, 428 niobyl phosphates, intercalates with C_4 diols, preparation and characterization, 151, 225 Pb(Mg_{1/3}Nb_{2/3})O₃, formation via mechanically activated nucleation and growth, **154**, 321 $0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O_3-0.6Pb(Zn_{1/3}Nb_{2/3})O_3]-0.1PbTiO_3, \quad formation \ via mechanically activated nucleation and growth, \ \textbf{154}, \ 321$ $(Pb(Mn,Nb)_{0.5}S_{1.5})_{1.15}$ NbS_2 , interlayer charge transfer quantitation via bond valence calculation, **155**, 1 [(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), synthesis, crystal structure, and physical properties, **152**, 540 Tl₂Nb₂O_{6+x} phases with pyrochlore structure, structure and properties, **155**, 225 ### Nitrate exchange with borate or silicate in hydrotalcite, effect of Mg:Al ratio, 151, 272 #### Nitrogen Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure of molecular and extended complexes, **152**, 247 Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, structures and magnetic properties, 152, 159 N-benzyl piperidinium dihydrogenmonophosphate, crystal structure and phase transitions, **155**, 298 #### BN coating of graphite for protection against oxidation, **154**, 162 crystallinity, effect of molecular precursor structure, **154**, 137 electronic energies and vibration frequencies, quasi-classical determination, **154**, 148 films prepared by MOCVD, 154, 101 nanotubes, structure and mechanisms of growth and formation, **154**, 214 phase diagram, 154, 280 $B_{12}N_{12},\,B_{24}N_{24},\,$ and $B_{60}N_{60},\,$ semiempirical and molecular dynamics studies, 154, 214 $^{3}_{\infty}$ [Cd(pdc)(H₂O)] and $^{3}_{\infty}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236 (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180 (CH₃NH₃)₃Bi₂Cl₉, low-temperature phase transition and structural relationships, 155, 286 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, hydrothermal synthesis and crystal structure, **155**, 409 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514 (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, hydrothermal synthesis and characterization, **154**, 514 $[C_2N_2H_{10}]_2Fe_5F_4(PO_4)(HPO_4)_6$, hydrothermal synthesis and 3D architecture, **154**, 507 $[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}$, isolation and transformation to $[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}$, **150**, 417 [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280 Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143 coordination polymers with 4,4'-dipyridyldisulfide, synthesis and structure, **152**, 113 CsCo(ND₃)₆(ClO₄)₂Cl₂, orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60 Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, **153**, 185 α - and β -[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174 [Cu(tripyridyltriazine)₂Mo₄O₁₃] layered compound, hydrothermal synthesis and structure, **152**, 141 1,2-dihydro-*N*-aryl-4,6-dimethylpyrimidin-2-ones, C–H···O and C–H···N networks in, **152**, 221 (Fe(CN)₆)³⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 Fe(H₂NCH₂CH₂NH₂)MoO₄, synthesis and structure, 152, 229 (H₃NCH₂CH₂NH₃)[Fe(C₂O₄)MoO₄], synthesis and structure, 152, methylamines, intercalation into TiS₂, 155, 326 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122 $Nb_2N_{0.88}O_{0.12}$, synthesis and crystal structure, 150, 36 [N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324 NCS⁻ counterion, role in anomalous spin crossover of mechanically strained Fe(II)-1,10-phenanthroline complexes, **153**, 82 [NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, **151**, 145 [NH₃CH₂CH(OH)CH₂NH₃][Co₂(PO₄)₂] and [NH₃CH₂CH(OH)CH₂ NH₃][Co₂(HPO₄)₃], synthesis and crystal structure, **155**, 62 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), synthesis and characterization, **155**, 37 NH₂(CH₂)₄NH₂V₄O₉, spin exchange interactions of, spin dimer analysis, **153**, 263 $Ni(NH_3)_2X_2$ (X = Cl,Br,I), preparation and crystal structures, 152, 381 [Pb₆O₄](OH)(NO₃)(CO₃), crystal structure, 153, 365 polymeric Ag(I)-hexamethylenetetramine complexes, structure and topological diversity, 152, 211 polymorphous one-dimensional tetrapyridylporphyrin coordination polymers structurally mimicking aryl stacking interactions, **152**, 253 $(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O \quad (X = S,Se; \quad M = Mn,Ni), \quad synthesis and structure,$ **153**, 195 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153**, 195 Sr₂NiN₂, synthesis, crystal structure, and physical properties, **154**, 542 Ti–Ni–Al–N systems, experimental studies, **155**, 71 zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen), as structure directors for, **152**, 286 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107 $Zn_4(PO_4)_2(HPO_4)_2\cdot 0.5(C_{10}H_{28}N_4)\cdot 2H_2O,$ hydrothermal synthesis and crystal structure, **154**, 368 $ZrM(OH)_2(NO_3)_3$ (M = K,Rb), ab initio structure determination from X-ray powder diffraction, **149**, 167 5-Nitrosalicylaldehyde and diamines, Schiff base ligands derived from, mechanochemical reaction with polymeric oxovanadium(IV) complexes, 153, 9 Nonaqueous solvents cobalt selenide nanocrystal synthesis in, 152, 537 Nuclear magnetic resonance ¹¹B, phase separation in Na₂O-B₂O₃ glass system, **149**, 459 ⁷¹Ga, [NH₃(CH₂)₃NH₃]_{0.5}[M(OH)AsO₄] (M = Ga,Fe), 155, 37 ⁶Li, lithium site occupancy in superconductor LiTi₂O₄ and related compounds, 152, 397 ⁷Li, ionic distribution in Li-doped BPO₄, **153**, 282 ²⁹Si MAS, Y₂Si₂O₇ phase transformations in gel- and mixed-powder-derived polymorphs, 149, 16 Nuclear microprobe microanalysis of light elements, 154, 301 Nucleation mechanically activated, in formation of complex perovskites, 154, 321 0 Obituaries Erwin Rudy, 154, 3 Guri Tsagareishvili, 154, 4 Octahedral tilting in perovskite-like $Ca_4Nb_2O_9 = 3 \cdot Ca(Ca_{1/3}Nb_{2/3})O_3$ polymorphs, 150, 43 Optical properties BiSeO₃Cl, nonlinear properties, 149, 236 Eu₃(BO₃)₂F₃, comparison with Ba₂Eu(CO₃)₂F₃, 153, 270 $In_2O_3-M_2O_3$ (M = Y,Sc) solid solutions doped with Sn, 153, 41 three-coordinate organoboron compounds, linear and nonlinear properties, **154**, 5 ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, **155**, 312 Optical spectroscopy BaLiF₃ doped with Ce³⁺, **150**, 178 boron-silicon thin films prepared by pulsed laser deposition, **154**, 141 Order-disorder phenomena β '- and β -LiZr₂(PO₄)₃ ionic conductors, neutron diffraction study, **152**, 340 $SrMn_{1-y}(B,C)_yO_{3-\delta}$ perovskite-related oxyborocarbonates, **149**, 226 Order–disorder transitions Na in Na_xW₁₈O₄₉, **151**, 220 Ordering antiferromagnetic, long-range, in $BaLaMRuO_6$ (M=Mg,Zn), 150, 383 A-site cation vacancy ordering in $Sr_{1-3x/2}La_xTiO_3$, HRTEM study, 149, 360 1:1 Bi–Sr, 1201 Bi $_{0.4}$ Sr $_{2.6}$ MnO $_{5-\delta}$ and 2201 Bi $_{0.9}$ Sr $_{3.1}$ MnO $_{6-\delta}$ with, synthesis and characterization, **151**, 210 Ca/Bi metal ions in (1 - x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related phases, electron diffraction and XRD studies, **149**, 218 cations in perovskite-like $Ca_4Nb_2O_9 = 3 \cdot Ca(Ca_{1/3}Nb_{2/3})O_3$ polymorphs, 150, 43 incommensurate, Cu/Co in TlCo_{2-x}Cu_xSe₂ ($x \sim 1$) system, 151, 260 La and Sr ions on A cationic sites in $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr, Nd,Sm,Eu,Gd), 150, 1 Na in $Na_xW_{18}O_{49}$: order-disorder transitions, 151, 220 oxygen/fluorine, in rutile-type FeOF, electron diffraction and crystal chemical studies, **155**, 359 short-range, induced by isovalent substitution of Sr^{2+} for Ba^{2+} in $BaMnS_2$, 155, 305 Organic supramolecular materials polarity, 152, 49 Organoborons three-coordinate, linear and nonlinear optical properties, **154**, 5 Orientational disordering CsCo(ND₃)₆(ClO₄)₂Cl₂, single crystal neutron diffraction study between 20 and 290 K, **149**, 60 Osmium MgOs₃B₄, channel structure, 154, 232 ScOs₃B₄, channel structure, **154**, 232 Oxalato complexes anionic, intercalation into layered double hydroxides, 153, 301 Oxidation anosovite at low temperature, M_3O_5 -anatase intergrowth structures formed during, analysis, **150**, 128 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, **154**, 45 graphite, protection by BN coatings, **154**, 162 Oxide solid solutions MO-M'O, mixing properties, semi-empirical and ab initio calculations, 153, 357 Oxovanadium(IV) complexes polymeric, mechanochemical reaction with Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines, **153**, 9 Oxygen BaBi₃O_{5.5} conducting, crystal growth and structure, 152, 435 exchange in $Pr_2NiO_{4+\delta}$ at high temperature: formation of $Pr_4Ni_3O_{10-x},$ 153, 381 lattice, transfer in fluorite-type oxides containing Ce, Pr, and/or Tb, **155**, 129 nonstoichiometry in La_{0.7}Sr_{0.3}MnO_{3- δ} \square_{δ} (0 \leq δ \leq 0.15), effects on physical properties, **151**, 139 oxygen/fluorine ordering in rutile-type FeOF, electron diffraction and crystal chemical studies, **155**, 359 partial pressure, effects on phase equilibria of Pr₂O₃-Co-Co₂O₃ system, 151, 12 Ρ Palladium RE_5 Pd₂X (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; X = Sb,Bi) pnictides, crystal structure and bonding, 152, 478 Ln-Pd-B-C (Ln = rare earths, Y), chemical and superconducting properties. 154, 114 LnPdGe (Ln = La-Nd,Sm,Gd,Tb), order of Pd and Ge atoms in, 154, 329 A_2 Pd₂Sn (A = Ce,U), band magnetism, local spin density functional calculations, **149**, 449 Yb₃Pd₄Ge₄, order of Pd and Ge atoms in, 154, 329 Paracrystals formation from $Ni_{1-x}O$ and CaO upon interdiffusion, 152, 421 ``` Paramagnetism ``` $Ba_6[V_{10}O_{30}(H_2O)] \cdot 2.5H_2O$ with unusual arrangement of V^{IV} -O polyhedra, 151, 130 Sr₂NiN₂, **154**, 542 Perovskites BaCa_{0.393}Nb_{0.606}O_{2.91}, cation loss in aqueous media leading to amorphization at room temperature, **149**, 262 $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq$ 1), high-pressure Raman study, **149**, 298 Ba_2CoNbO_6 , magnetic transition in, **151**, 294 $BaIr_{1-x}Co_xO_{3-\delta}$ (x=0.5,0.7,0.8), structural chemistry and electronic properties, **152**, 361 $BaLaMRuO_6$ (M = Mg,Zn), atomic and magnetic long-range ordering in, 150, 383 Ba₂YbTaO₆, with ordered structure, magnetic susceptibility, **150**, 31 $Bi_{4-x}La_xTi_3O_{12}$ (x=1,2) and $Bi_{2-x}Sr_{2+x}Ti_{1-x}Nb_{2+x}O_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 1201 Bi_{0.4}Sr_{2.6}MnO_{5-δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6-δ} with 1:1 Bi-Sr ordering, synthesis and characterization, **151**, 210 $Ca_4Nb_2O_9=3\cdot Ca(Ca_{1/3}Nb_{2/3})O_3$ polymorphs, octahedral tilting and cation ordering in, **150**, 43 complex, formation via mechanically activated nucleation and growth, 154, 321 A_2 FeNbO₆ (A = Sr,Ba), magnetic susceptibility and Mössbauer spectroscopy, **154**, 591 KCa₂Nb₃O₁₀, crystal structure, 151, 40 $\text{La}_{1-x}\text{Eu}_x\text{NiO}_3$ (0 \leq x \leq 1), metal-insulator transition and magnetic properties, **151**, 1 La_{0.5}Pr_{0.5}CrO₃, magnetization reversal, **155**, 447 La₅Re₃MnO₁₆, synthesis, structure, and magnetic behavior, **151**, 31 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ series, structural characterization, **155**, 455 $La_{0.7}Sr_{0.3}MnO_{3-\delta}\Box_{\delta}$ (0 $\leq\delta\leq$ 0.15), physical properties, effects of oxygen nonstoichiometry, **151**, 139 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$), X-ray powder and electron diffraction study, **154**, 427 $NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11-\delta}$ and $NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}O_{14-\delta}$, defect chemistry and electrical properties, **155**, 216 Nd_{1-x}TiO₃, metal-insulator phenomena, **155**, 177 $LnNiO_3$ (Ln=Pr,Nd,Sm) polycrystalline compounds prepared via different precursors, properties, 151, 298 Pr_{1-x}Ba_xCoO₃, magnetic order, magnetic circular dichroism spectroscopic study, **152**, 577 $Pr_{1-x}Sr_xFeO_{3-\delta}$, structure and magnetism, 150, 233 ${\rm SmNi_{1-x}Co_xO_3}$, structure, relationship to physical properties, 150, 145 $\rm Sm_{1/3} Sr_{2/3} FeO_{3-\delta},$ charge ordering and magnetotransport transitions, 153, 140 Sm_{1-x}TiO₃, metal-insulator phenomena, **155**, 177 Sr₂CrMoO₆ double perovskite, magnetoresistance, **155**, 233 $Sr_nFe_nO_{3n-1}$ ($n=2,4,8,\infty$), oxygen-vacancy-ordered crystal structure, evolution and relationship to electronic and magnetic properties, **151**, 190 Sr_{1-3x/2}La_xTiO₃, A-site cation-vacancy ordering in, HRTEM study, **149**, 360 $SrMn_{1-\nu}(B,C)_{\nu}O_{3-\delta}$, order-disorder phenomena, **149**, 226 $Sr_3Ru_2O_7$, structural distortions, neutron diffraction study, **154**, 361 $Ln_{2/3}TiO_3$ (Ln = Pr,Nd), synthesis and magnetic properties, **149**, 354 Phase diagram $BaCe_xZr_{1-x}O_3 \ (0 \le x \le 1)$ mixed perovskites, **149**, 298 BN, **154**, 280 CaO:Al₂O₃:Nb₂O₅ system, 155, 78 Ca-Rh-O system, 150, 213 Gd₂O₃-B₂O₃, **154**, 204 $In_2O_3-M_2O_3$ (M=Y,Sc) solid solutions doped with Sn, 153, 41 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, **155**, 280 Mg-Fe-O system, 149, 33 Pr_2O_3 -Co-Co₂O₃ system, **151**, 12 $SrO-Ho_2O_3-CuO_x$ system, **149**, 333 Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, **155**, 71 Phase equilibria CaO:Al₂O₃:Nb₂O₅ system, 155, 78 Hf-B-C system, calculation by thermodynamic modeling, 154, 257 LaCoO₃-LaMnO₃-BaCoO_z-BaMnO₃ system, **153**, 205 La-Mn-O at 1100°C, **153**, 3367 Pr₂O₃-Co-Co₂O₃ system, thermogravimetric study at 1100 and 1150°C, **151**, 12 Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, **155**, 71 Phase relations In_2O_3 -TiO₂-MgO system at 1100 and 1350°C, **150**, 276 Phase separation in Na₂O-B₂O₃ glass system, NMR study, 149, 459 Phase stability Al₃BC₃ at high pressure, **154**, 254 Mg-Fe-O system, 149, 33 Phase transition anatase, induced by ball-milling, kinetics and mechanisms, **149**, 41 antifluorite to anticotunnite in Li₂S at high pressures, **154**, 603 N-benzyl piperidinium dihydrogenmonophosphate, **155**, 298 to Bi_{1-v}La_vO_{1.5} monoclinic solid solution, **151**, 281 Bi_2MoO_6 catalyst, high-temperature incommensurate-to-commensurate transition, **155**, 206 BiZn₂PO₆, 153, 48 CeO_{1.765} and CeO_{1.800}, single-crystal neutron diffraction studies, **153**, t'_{meta}-(Ce_{0.5}Zr_{0.5})O₂ phase prepared by reduction and successive oxidation of t' phase, effect on electrical conductivity, **151**, 253 (CH₃NH₃)₃Bi₂Cl₉ at low temperature, 155, 286 CsCo(ND₃)₆(ClO₄)₂Cl₂ orientational disordering, single crystal neutron diffraction study between 20 and 290 K, **149**, 60 Cs2KMnF6 crystal structures of low- and high-temperature modifications, **150**, 399 at high pressure, 153, 248 GaPO₄, 149, 180 GeSe₂ three-dimensional crystals at high pressures and temperatures, 150, 121 LaBaCuGaO₅ under high pressure, 155, 372 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, 155, 455 LiTi₂O₄ spinel to ramsdellite, Li site occupancy in, NMR study, **152**, 397 Li₂Ti₃O₇, R phase to H phase, **152**, 546 NiTa₂Se₇ with incommensurately modulated low-temperature structure, **153**, 152 orthorhombic LaCrO₃, neutron powder diffraction study, **154**, 524 Pb₅Al_{2.96}Cr_{0.04}F₁₉, ferroelastic phase, **155**, 427 pressure-induced, $Ln_{2-x}Nd_xCuO_4$ for Ln = La (0.6 $\leq x \leq$ 2) and Ln = Pr (x = 0), 151, 231 SrC₂, **151**, 111 Sr₂Fe₂O₅ under high pressure, **155**, 381 TlTe: crystal structure, 149, 123 Y₂Si₂O₇, in gel- and mixed-powder-derived polymorphs, X-ray diffraction and ²⁹Si MAS NMR studies, 149, 16 ZrO₂ nanocrystals, tetragonal-monoclinic transition, crystallite size effect in, XRD and Raman spectroscopic study, 149, 399 pH-controlled synthesis ${}_{\infty}^{3}$ [Cd(pdc)(H₂O)] and ${}_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], **152**, 236 Phenanthrene [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, synthesis and crystal structure, **152**, 280 Phenanthroline complexes with Cu or Mn, functionalized MCM-41 containing, synthesis and characterization, **152**, 447 1,10-Phenanthroline complexes with Fe(II), anomalous spin crossover associated with mechanical strain, role of NCS⁻ and PF₆ counterions, **153**, 82 intercalation compound with layered MnPS₃, synthesis, characterization, and magnetic properties, **150**, 281 intercalation reaction with layered FePS₃, 150, 258 Phonons analysis in tetragonal CdAl₂Se₄, 153, 317 boron carbide enriched in 10 B, 11 B, and 13 C isotopes, IR spectra, **154**, 79 electron–phonon interaction in β -rhombohedral boron doped with metal, **154**, 13 interactions with sliding charge-density waves, 155, 105 metal hexaborides, IR spectra, 154, 87 optical, B₄₈Al₃C₂, 154, 75 rare-earth hexaborides, 154, 275 β -rhombohedral boron modified isotopically, **154**, 296 Phosphors $BaHf_{1-x}Zr_x(PO_4)_2$ emitting ultraviolet under X-ray excitation, **155**, 229 $CaIn_2O_4$, activated by Pr, luminescence properties, **155**, 441 self-activated, ZnGa₂O₄, luminescent properties, systematic tuning by Cd²⁺ substitution, **150**, 204 Phosphorus Ag₂NbTi₃P₆S₂₅, crystal structure, **153**, 55 AgTi₂(PS₄)₃, crystal structure and ionic conductivity, 153, 55 apatite-related phosphates, synthesis and characterization, 149, 133 $BaHf_{1-x}Zr_x(PO_4)_2$, UV-emitting X-ray phosphor, **155**, 229 N-benzyl piperidinium dihydrogenmonophosphate, crystal structure and phase transitions, **155**, 298 Bi_{6.67}O₄(PO₄)₄, existence of, **154**, 435 BiZn₂PO₆, crystal structure, **153**, 48 boron phosphide films preparation by photo- and thermal chemical vapor deposition processes, **154**, 39 thermoelectric properties, 154, 26 $B_{12}P_2$ wafers, electrical and thermal properties, 154, 33 BPO₄ doped with Li, ionic distribution in, NMR study, **153**, 282 calcium phosphate, formation, effects of Ni, **151**, 163 Ca_{9.75}[(PO₄)_{5.5}(CO₃)_{0.5}]CO₃, A-type carbonate apatite, structure analysis by single-crystal X-ray diffraction, **155**, 292 [Ca₁₀(PO₄)₆(OH)₂] hydroxyapatite, site preference of rare earth elements in, 149, 391 $Ca_6Sm_2Na_2(PO_4)_6F_2$, crystal structure and polarized Raman spectra, 149, 308 Cd₅(PO₄)₃Br and Cd₅(PO₄)₃I apatites, incommensurate modulation, **150**, 154 (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂, one-dimensional cobalt phosphate, synthesis and structure, **153**, 180 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514 (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, hydrothermal synthesis and characterization, **154**, 514 [C₂N₂H₁₀]₂Fe₅F₄(PO₄)(HPO₄)₆, hydrothermal synthesis and 3D architecture, **154**, 507 $$\begin{split} &[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}, isolation \ and \ transformation \ to \\ &[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}, \ \textbf{150}, \ \textbf{417} \end{split}$$ Cs₂CuP₃S₉, chiral compound with chiral screw helices, preparation, structure, and characterization, **151**, 326 Cs₃Mg₂P₆O₁₇N, synthesis and crystal structure, 153, 185 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, synthesis and structure, 150, 159 Cu^I_{0.5}Mn^{II}_{0.25}Zr₂(PO₄)₃ Nasicon-type phosphate, structure and lumines-cence, **152**, 453 $(RE_{m+n})(Cu_2P_3)_m(Cu_4P_2)_m$, relationship to other rhombohedral rare earth copper phosphides, **151**, 150 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies, **150**, 188 β-Fe₂(PO₄)O and Fe₄(PO₄)₃(OH)₃, solid solution series between, synthesis and phase characterization, **153**, 237 FePS₃, layered compound, intercalation reaction with 1,10-phenanthroline, **150**, 258 GaPO₄, structural phase transformations, 149, 180 $\text{Ho}_2\text{Cu}_{6-x}\text{P}_{5-y}$, crystal structure and $(RE_{m+n})(\text{Cu}_2\text{P}_3)_m(\text{Cu}_4\text{P}_2)_n$ relationship to other rhombohedral rare earth copper phosphides, **151**, 150 LiZr₂(PO₄)₃, β' and β phases, order-disorder and mobility of Li⁺ in, neutron diffraction study, 152, 340 metal phosphides (metal = Co,Ni,Cu), solvothermal synthesis, 149, MnPS₃, intercalation compound with 1,10-phenanthroline, synthesis, characterization, and magnetic properties, **150**, 281 Na_{2-x}Ag_xZnP₂O₇, Ag(I) luminescence in, **149**, 284 Na₄Co₃H₂(PO₄)₄·8H₂O, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, 151, 122 Na₃In(PO₄)₂, polymorphous modifications, structure, 149, 99 Na_{3.64}Mg_{2.18}(P₂O₇)₂, crystal structure, **152**, 323 Na_{3.64}Ni_{2.18}(P₂O₇)₂, crystal structure, **152**, 323 Na_{1.5}Pb_{0.75}PSe₄ with cubic structure, flux synthesis and isostructural relationship to Na_{0.5}Pb_{1.75}GeS₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 NaSb₃O₂(PO₄)₂, synthesis and structure, 151, 21 Na₂ZnP₂O₇, crystal structure, 152, 466 [N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324 [NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, synthesis, racemic isopropanolamine as solvent and template for, **151**, 145 $[NH_3CH_2CH(OH)CH_2NH_3][Co_2(PO_4)_2] \quad \text{and} \quad [NH_3CH_2CH(OH) \\ CH_2NH_3][Co_2(HPO_4)_3], \text{ synthesis and crystal structure, } \textbf{155, } 62$ niobyl phosphates, intercalates with C_4 diols, preparation and characterization, 151, 225 open-framework metal phosphates, preparation from amine phosphates and monomeric four-membered ring phosphate, **152**, 302 PbBi₆O₄(PO₄)₄, existence of, **154**, 435 Pb₅Bi₁₈P₄O₄₂, crystal structure, 151, 181 PbVO₂PO₄, α -layered and β -tunnel structures, 149, 149 PF₆⁻ counterion, role in anomalous spin crossover of mechanically strained Fe(II)-1,10-phenanthroline complexes, **153**, 82 (P₂O₇)⁴⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 RP₅O₁₄ (R = La,Nd,Sm,Eu,Gd), crystal structures and magnetic properties. 150, 377 Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), synthesis and structure, X-ray single crystal and neutron powder diffraction studies, 149, 9 $\mathrm{Sb_5PO_{10}}$, synthesis and structure, 155, 451 $\mathrm{SiP_2O_7}$, comparison with $\mathrm{Na_2}M_2(\mathrm{BO_3})_2\mathrm{O}$ ($M=\mathrm{Al},\mathrm{Ga}$), 154, 344 SiP_2O_7 , comparison with $Na_2M_2(BO_3)_2O$ (M = Al,Ga), **154**, 344 γ -SrHPO₄, synthesis and crystal structure, **152**, 428 α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, 154, 557 TlZn(PO₃)₃, structure and luminescence, 154, 584 vanadyl phosphate intercalates with acetone, structural analysis, 150, 356 with C₄ diols, preparation and characterization, 151, 225 (V^{IV}O)₂(H₂O){O₃P-(CH₂)₃-PO₃}·2H₂O, hydrothermal synthesis, structure, and magnetic behavior, **155**, 238 (VO)₂P₂O₇, single crystal growth at 3 GPa, 153, 124 W₂O₃ · P₂O₇ with empty tunnel structure, stabilization, **155**, 112 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107 $Zn_4(PO_4)_2(HPO_4)_2\cdot 0.5(C_{10}H_{28}N_4)\cdot 2H_2O,$ hydrothermal synthesis and crystal structure, **154**, 368 ZrPOF-*n* family with 2D and 3D structure types, synthesis and crystal structures **149**, 21 Photoconductivity modulated, β -rhombohedral carbon of high purity and doped with carbon, **154**, 93 steady-state interband, high-purity β -rhombohedral boron, **154**, 68 Photoluminescence BaLiF₃ doped with Ce³⁺, 150, 178 CaIn₂O₄ phosphors activated by Pr, 155, 441 conjugated molecule doped in polymer, effect of excimer behavior, **153**, 192 β -rhombohedral boron of high purity, **154**, 68 ZnGa₂O₄ self-activated phosphors, systematic tuning by Cd²⁺ substitution, **150**, 204 Piperazine $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4]\cdot 3H_2O$ and $(C_4H_{12}N_2)$ $[(VO)(VO_2)_2(H_2O)(PO_4)_2],$ hydrothermal synthesis and characterization, **154**, 514 intercalation into α -titanium hydrogenphosphate, structural and calorimetric study, **154**, 557 Piperazinium(2+) selenate monohydrate crystal structure, vibrational spectra, and thermal behavior, **150**, 305 Piperidine intercalation into α-titanium hydrogenphosphate, structural and calorimetric study, **154**, 557 Plasma vibrations metal hexaborides, 154, 87 Platinum $Yb_2Pt_3Sn_5$ -type stannides, synthesis, structure, and magnetic measurements, **150**, 112 Pnictides rare-earth-rich RE_5M_2X (RE = Y,Gd,Tb,Dy,Ho,Er,Tm,Lu; M = Ni,Pd; X = Sb,Bi), crystal structure and bonding, **152**, 478 Point group symmetry in design of functional crystals, 152, 191 Polarity formation in organic supramolecular materials, 152, 49 Polycondensation $[Mo_2S_2O_2]^{2+}$ molecular building block, 152, 78 Polycyclic aromatic molecules neutral molecular railroad coordination polymers incorporating, synthesis and crystal structure, **152**, 280 Polymerization solid-state, sodium propynoate, induction by gamma radiation, **152**, 99 Polymers coordination, see Coordination polymers three-coordinate boron-containing conjugated polymers, linear and nonlinear optical properties, **154**, 5 Polyol media preparation of metallic powders and alloys in, thermodynamic approach, **154**, 405 Polyoxometalates extended solids composed of, synthesis, structure, and physicochemical properties, **152**, 105 solid preparation from $[Mo_2S_2O_2]^{2+}$ molecular building block, 152, synthon-based building blocks for control of growth of solid-state materials, **152**, 57 Polyoxotungstates thermal decomposition, in preparation of tungsten bronzes, 149, 378 Polystyrene conjugated molecule doped in, photoluminescence and electroluminescence, effect of excimer behavior, **153**, 192 Polythiometallates 1-D coordination compounds, synthesis, structure, and electrical properties, 151, 286 Porphyrins microporous materials, construction, 152, 87 Potassium Cs₂KMnF₆, phase transition crystal structures of low- and high-temperature modifications, **150**, 399 at high pressure, 153, 248 KMQ_2 (M = Al,Ga; Q = Se,Te) chalcogenides with stacking faults, synthesis and structure, **149**, 242 KBi₂CuS₄, structure and conductivity, 155, 243 K₂CaNaTa₃O₁₀ Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, 155, 46 KCa₂Nb₃O₁₀ layered perovskite, crystal structure, 151, 40 K₂Ca₂Ta₂TiO₁₀·0.8H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, 155, 46 KCuF₃ and K₂CuF₄, extended magnetic solids, spin exchange interactions in, **151**, 96 K₃Hg₁₁ and K₇Hg₃₁, synthesis and structure, **149**, 419 K₂MnF₅·H₂O, neutron diffraction study, **150**, 104 K_{0.3}MoO₃, interactions of sliding charge-density waves with phonons, **155**, 105 $K_{1.8}Mo_9S_{11}$ and $K_2Mo_9S_{11}$, band structure, 155, 124 KNiF₃ and K₂NiF₄, extended magnetic solids, spin exchange interactions in, 151, 96 $K_{7.62(1)}Si_{46}$, synthesis and structure, 154, 626 K₂SrLaTi₂TaO₁₀ · 2H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46 $K_6(UO_2)_5(VO_4)_2O_5$, synthesis and crystal structure, 155, 342 $La(H_2O)_2K(C_2O_4)_2 \cdot H_2O$, crystal structure and thermal behavior, 150, 81 $Sr_{0.4}K_{0.6}BiO_3$, structure determination as function of temperature from synchrotron X-ray powder diffraction data, **150**, 316 Sr_{3.75}K_{1.75}Bi₃O₁₂, synthesis and characterization, **152**, 492 ZrK(OH)₂(NO₃)₃, ab initio structure determination from X-ray powder diffraction, **149**, 167 Powder neutron diffraction $Ca_{4.78}Cu_6O_{11.60}$ crystal structure, 151, 170 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), **150,** 188 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157 intermediate cubic phase crystallized from Synroc alkoxide precursor at $800\ ^{\circ}\text{C},\ 150,\ 209$ $K_2MnF_5 \cdot H_2O$, 150, 104 LaCrO₃ structural phase transition, **154**, 524 $La_3Ni_2O_7$: structural relationships among phases $La_{n+1}Ni_nO_{3n+1}$ (n = 1,2,3), 152, 517 La₅Si₂BO₁₃, **155**, 389 Li₂Ti₃O₇ H phase engineered scavenger compound, 152, 546 β'- and β-LiZr₂(PO₄)₃: order-disorder and mobility of Li⁺, **152**, 340 Na₂Ti₂Sb₂O: structure-property relationships, **153**, 275 Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), 149, 9 Ru pyrochlores undergoing metal-nonmetal transition, 151, 25 Sr₄Fe₂O₆CO₃, **152**, 374 Sr₃Ru₂O₇: structural distortions, **154**, 361 TIF, 150, 266 Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y-derived superstructure, **155**, 22 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr,Nd,Sm,Eu,Gd), **150,** 1 Powder X-ray diffraction Cu₂Gd_{2/3}S₂: interlayer short-range order of Gd vacancies, **152**, 332 GaPO₄ structural phase transformations, **149**, 180 $(Hg,M)Sr_2(Ln,Ce)_2Cu_2O_z$ 1222-type superconductors, **154**, 488 intermediate cubic phase crystallized from Synroc alkoxide precursor at $800~^{\circ}\text{C},\,\textbf{150},\,209$ $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O(M = K,NH_4)$: crystal structure and thermal behavior, **150**, 81 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, **155**, 455 Li₂S: reversible antifluorite to anticotunnite phase transition at high pressures, **154**, 603 Li₂Ti₃O₇ H phase engineered scavenger compound, **152**, 546 Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D incommensurate modulation, **152**, 573 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, **154**, 427 1,10-phenanthroline intercalation into FePS₃ layered compound, 150, 258 into MnPS₃ layered compound, 150, 281 Ru pyrochlores undergoing metal-nonmetal transition, 151, 25 $Sr_{1.25}Bi_{0.75}O_3$ and $Sr_{0.4}K_{0.6}BiO_3$, structure determination as function of temperature, **150**, 316 SrC₂, 151, 111 Sr₂Fe₂O₅: structural phase transition under high pressure, **155**, 381 Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_v-derived superstructure, **155**, 22 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr,Nd,Sm,Eu,Gd), 150, 1 vanadyl phosphate intercalated with acetone, 150, 356 RE_xWO_3 (RE = La,Nd) synthesized under high pressure, **154**, 466 YB₆₆: effects of transition metal doping, **154**, 54 $ZrM(OH)_2(NO_3)_3$ (M = K,Rb), ab initio structure determination, 149, 167 Power factor β -rhombohedral boron doped with metal, **154**, 13 Praseodymium BaPr₂MnS₅, crystal structure and magnetic properties, 153, 330 $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$ ceramics, sintering and conductivity, effect of particle size, **155**, 273 CaIn₂O₄ phosphors activated by, luminescence properties, **155**, 441 fluorite-type oxides containing, lattice oxygen transfer in, **155**, 129 La_{0.5}Pr_{0.5}CrO₃, magnetization reversal, **155**, 447 PrB₆, floating zone growth and high-temperature hardness, 154, 238 Pr_{1-x}Ba_xCoO₃ perovskite, magnetic order, magnetic circular dichroism spectroscopic study, 152, 577 Pr_{0.4}Ca_{0.6}MnO₃, Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330 PrCo₄B, magnetic properties, 154, 242 Pr₂CuO₄, pressure-induced phase transitions, 151, 231 Pr₅Mo₃₂O₅₄, with *trans*-capped Mo₈ octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, synthesis, structure, and properties, **152**, 403 $\Pr_{1-x}Nd_xTiO_3$ ($0 \le x \le 1$) solid solutions, magnetic properties, **153**, 145 (\Pr_4N)₂ $M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se; M = Mn,Ni), synthesis and structure, **153**, 195 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153.** 195 Pr₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246 PrNiIn₂, synthesis and crystal structure, 152, 560 PrNiO₃ polycrystalline compounds prepared via different precursors, properties, 151, 298 $Pr_2NiO_{4+\delta},$ oxygen exchange at high temperature and formation of $Pr_4Ni_3O_{10-x},$ 153, 381 Pr₂O₃, redox reaction in ZnO sintered ceramics, 149, 349 Pr_2O_3 -Co- Co_2O_3 system, thermogravimetric study at 1100 and 1150°C, **151**, 12 PrPdGe, order of Pd and Ge atoms in, 154, 329 PrRhIn, synthesis and properties, 152, 560 Pr₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, 152, 441 $Pr_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145 $Pr_{1-x}Sr_xFeO_{3-\delta}$, structure and magnetism, **150**, 233 Pr_{2/3}TiO₃, synthesis and magnetic properties, 149, 354 $Tl(Pr_2Sr_2)Ni_2O_9$, synthesis and structure, **150**, 1 ZrSiO₄ doped with, hyperfine characterization, **150**, 14 Precipitation CdSe cubic nanocrystals in aqueous solution at room temperature, **151**, 241 Pressure effects Cs₂CoCl₄ and Cs₂CuCl₄, X-ray diffraction studies, **153**, 212 phase transitions LaBaCuGaO₅ under high pressure, 155, 372 $Ln_{2-x}Nd_xCuO_4$ for $Ln = La~(0.6 \le x \le 2)$ and Ln = Pr~(x = 0), 151, 231 Sr₂Fe₂O₅ under high pressure, **155**, 381 TIF crystal structure, 150, 266 Proceedings of the 13th International Symposium on Boron, Borides, and Related Compounds, preface, **154**, 1 Proton exchange Ruddlesden-Popper tantalates and titanotantalates, **155**, 46 *p*-type thermoelectric $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}(x=2)$, synthesis and characterization, **151**, 61 Pulsed laser deposition boron-silicon thin film preparation, 154, 141 Pyrazine intercalation into α-titanium hydrogenphosphate, structural and calorimetric study, **154**, 557 Pyrazoledicarboxylate $^{3}_{\infty}$ [Cd(pdc)(H₂O)] and $^{3}_{\infty}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236 Pyrochlores Bi₂Pb₂O₇, hydrothermal synthesis and characterization, 149, 314 CaNdFe_{1/2}Nb_{3/2}O₇, synthesis, crystal structure, Mössbauer spectrum, and magnetic susceptibility, **154**, 483 In₂O₃-M₂O₃ (M = Y,Sc) solid solutions doped with Sn, electrical, optical, and structural properties, 153, 41 rare-earth oxides, structural determination by wide-angle CBED, comparison with atomistic computer simulation, 153, 16 Ru pyrochlores metal-nonmetal transition in, structural studies, 151, 25 $R_2Ru_2O_7$ (R= rare earths), specific heat and ac susceptibility, 152, 441 $Tl_2Nb_2O_{6+x}$, structure and properties, 155, 225 Pyrophosphate Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 Q Quasicrystals B₉₆ isomers, ab initio study, **154**, 269 R Raman spectroscopy $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq$ 1) mixed perovskites, high-pressure study, **149**, 298 B₄₈Al₃C₂, phonon spectra and frequencies, **154**, 75 N-benzyl piperidinium dihydrogenmonophosphate, 155, 298 CaCu(HCOO)₄ and Ca₂Cu(HCOO)₆ crystals, temperature-dependent study, **154**, 338 $Cs_2CuP_3S_9$, chiral compound with chiral screw helices, **151**, 326 N,N'-dimethylpiperazinium(2+) selenate dihydrate, **150**, 305 LiH₅TeO₆, **150**, 410 LiIn(MoO₄)₂, **154**, 498 Li₂S: reversible antifluorite to anticotunnite phase transition at high pressures, 154, 603 piperazinium(2+) selenate monohydrate, **150**, 305 polarized, Ca₆Sm₂Na₂(PO₄)₆F₂, **149**, 308 seven-coordinated diaquasuccinatocadmium(II) bidimensional polymer, 153 1 Sr(OH)Br, analysis of hydroxide ion disorder, 151, 267 ZrO₂ nanocrystals: crystallite size effect on tetragonal-monoclinic transition, 149, 399 # Ramsdellite LiTi₂O₄, formation from spinel, Li site occupancy in, NMR study, **152**, 397 $\text{Li}_{2+x}\text{Ti}_3\text{O}_7$ obtained electrochemically, structural study, 153, 132 Redox properties coordination polymers with 4,4'-dipyridyldisulfide, **152**, 113 $Pr_{1-x}Sr_xFeO_{3-\delta}$, **150**, 233 transition metal ions of group VIB in rutile ${\rm TiO_2}$ solid solutions, XRD and EPR study, 152, 412 Redox reaction Pr₂O₃ in ZnO sintered ceramics, **149**, 349 Reduction Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, 152, 526 WO₃ by CH₄-H₂ mixture, **154**, 412 Relaxor ferroelectrics formation via mechanically activated nucleation and growth, **154**, 321 Resorcin[4]arenes based on cavity-containing materials, design strategies, **152**, 199 Rhenium (Hg,Re)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 $\text{La}_5\text{Re}_3\text{MnO}_{16}$, synthesis, structure, and magnetic behavior, **151**, 31 $(\text{Pr}_4\text{N})_2M(\text{H}_2\text{O})_5[\text{Re}_6X_8(\text{CN})_6]\cdot\text{H}_2\text{O}$ $(X=\text{S},\text{Se};\ M=\text{Mn},\text{Ni})$, synthesis and structure, **153**, 195 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153**, 195 $Sr_{11}Re_4O_{24}$ double oxide, preparation, structure, and magnetic studies, 149, 49 Rhenium chalcocyanide clusters transformation of isolated fragments to infinite chains, **153**, 195 Rhodium Ca-Rh-O system, chemical potential and Gibbs energy of formation measurements, solid state cells with buffer electrodes for, 150, 213 PrRhIn, synthesis and properties, 152, 560 Rh(II) monocarboxylate, microporous material, synthesis and gas occlusion properties, **152**, 120 Ti₃Rh₂In₃, structure, chemical bonding, and properties, **150**, 19 $Rb_5Au_3O_2$ and $Rb_7Au_5O_2$, syntheses, structures, and properties, 155, 29 $Rb_3Bi_5Cu_2S_{10}$, structure and conductivity, 155, 243 Rb₂[B₄O₅(OH)₄] · 3.6H₂O, crystal structure and thermal behavior, **149**, $RbLn_2CuSe_4$ (Ln = Sm,Gd,Dy), synthesis and structures, 151, 317 $Rb_{1.5}Ln_2Cu_{2.5}Se_5$ (Ln = Gd,Dy), synthesis and structure, 151, 317 Rb₃Hg₂₀ and Rb₇Hg₃₁, synthesis and structure, **149**, 419 $Rb_2(HSO_4)(H_2PO_4)$ and $Rb_4(HSO_4)_3(H_2PO_4)$, synthesis and structure, X-ray single crystal and neutron powder diffraction studies, **149**, 9 $Rb_2Mo_9S_{11}$, band structure, **155**, 124 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n=1 to 4), superconducting cluster compounds, synthesis, structure, and theoretical studies, **155**, 417 Rb₈Na₁₆Ge₁₃₆ and Rb₈Na₁₆Si₁₃₆ clathrates, synthesis and characterization. 153, 92 Rb₂Sb₈S₁₃·3.3H₂O, hydrothermal synthesis and crystal structure, **155**, 409 $Rb_{6.15(2)}Si_{46}$, synthesis and structure, 154, 626 RbSm₂Ag₃Se₅, synthesis and structure, **151**, 317 ZrRb(OH)₂(NO₃)₃, ab initio structure determination from X-ray powder diffraction, 149, 167 Ruddlesden-Popper phases $\text{La}_{n+1}\text{Ni}_n\text{O}_{3n+1}$ (n=1,2,3), structural relationships among phases, neutron diffraction study, **152**, 517 Nd_4MO_{10} (M = Co,Ni), crystal structure and properties, **151**, 46 $Sr_4Fe_2O_6CO_3$, synthesis, crystal structure, and magnetic order, **152**, $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x = 1,1.5,2), properties, **155**, 96 tantalates and titanotantalates, synthesis, proton exchange, and topochemical dehydration, **155**, 46 Ruthenium BaLaMRuO₆ (M = Mg,Zn), atomic and magnetic long-range ordering in. **150**, 383 BaRuO₃, bond valence analysis, 151, 245 Ba₄Ru₃O₁₀, crystal structure and compressibility, **149**, 137 Ca_{3.1}Cu_{0.9}RuO₆, synthesis, structural chemistry, and magnetic properties, 153, 254 ferromagnetism and metallicity induced by, in Mn(IV)-rich $Ln_{0.4}Ca_{0.6}MnO_3$ (Ln = La, Pr, Nd, Sm), 151, 330 La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈, geometric frustation in, 155, 189 Ru dicarboxylates, microporous materials, synthesis and gas occlusion properties, **152**, 120 Ru pyrochlores metal-nonmetal transition in, structural studies, 151, 25 $R_2 Ru_2 O_7$ (R = rare earths), specific heat and ac susceptibility, 152, 441 Sm_{0.2}Ca_{0.8}MnO₃ doped with, micronanostructures, correlation with magnetic transitions, 155, 15 $Sr_3Ru_2O_7$, structural distortions, neutron diffraction study, 154, 361 Rutile FeOF, oxygen/fluorine ordering in, electron diffraction and crystal chemical studies, 155, 359 Ge-substituted SnO_2 , sol-gel synthesis and characterization, **154**, 579 solid solutions, redox behavior of VIB transition metal ions in, XRD and EPR study, **152**, 412 S Samarium Ba₄Sm₂Cd₃S₁₀, synthesis and structure, **149**, 384 BaSm₄(SiO₄)₃Se, crystal structure, 155, 433 $Ba_{1-x}Sm_xSO_4$, Sm^{2+} crystal chemistry and stability in, 154, 535 Ca₆Sm₂Na₂(PO₄)₆F₂, crystal structure and polarized Raman spectra, **149.** 308 $Ca_2Ta_2O_7$ - $Sm_2Ti_2O_7$ system, syntheses in, structures, and crystal chemistry, **150**, 167 $Ce_{1-x}Sm_xTiO_3$ (0 $\le x \le 1$) solid solutions, magnetic properties, 153, 145 (Hg,M)Sr₂(Sm,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3$ $(0 \le x \le 1)$ solid solutions, magnetic properties, 153, 145 $Pr_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145 RbSm₂Ag₃Se₅, synthesis and structure, **151**, 317 RbSm₂CuSe₄, synthesis and structures, **151**, 317 site preference in hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂], **149**, 391 SmB₆, floating zone growth and high-temperature hardness, 154, 238 SmB_6 and $Sm_{0.8}B_6$, interband transitions, IR-active phonons, and plasma vibrations, 154, 87 Sm_{0.2}Ca_{0.8}MnO₃ doped with Ru, micronanostructures, correlation with magnetic transitions, 155, 15 Sm_{0.4}Ca_{0.6}MnO₃, Mn(IV)-rich, Ru-induced ferromagnetism and metallicity, 151, 330 SmCo₄B, magnetic properties, 154, 242 SmCu₃Ti₃FeO₁₂, dielectric constant, 151, 323 Sm_{2/3}Cu₃Ti₄O₁₂, dielectric constant, **151**, 323 $Sm_{(1-x)}Gd_xTiO_3$, magnetism, **154**, 619 Sm₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246 SmNi_{1-x}Co_xO₃, structure, relationship to physical properties, **150**, 145 SmNiIn₂, synthesis and crystal structure, **152**, 560 SmNiO₃ polycrystalline compounds prepared via different precursors, properties, **151**, 298 SmPdGe, order of Pd and Ge atoms in, 154, 329 SmP₅O₁₄, crystal structure and magnetic properties, **150**, 377 Sm₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, **152**, 441 Sm₂(SiO₄)Te, monoclinic and orthorhombic crystals, structure, **155**, 433 SmSO₄, Sm²⁺ crystal chemistry and stability in, **154**, 535 $Sm_{1/3}Sr_{2/3}FeO_{3-\delta}$, charge ordering and magnetotransport transitions, 153, 140 Sm_{1-x}TiO₃ perovskites, metal-insulator phenomena, 155, 177 Sm₇VO₄Se₈, synthesis and characterization, 154, 564 Sr_{1-x}Sm_xSO₄, Sm²⁺ crystal chemistry and stability in, **154**, 535 Tl(Sm₂Sr₂)Ni₂O₉, synthesis and structure, **150**, 1 Scale chemistry with building units, 152, 37 Scandium In₂O₃-Sc₂O₃ solid solutions doped with Sn, electrical, optical, and structural properties, **153**, 41 Sc₂AlB₆, crystal growth and structure, 154, 49 ScB₁₇C_{0.25}, single-crystal XRD and TEM study, **154**, 130 ScOs₃B₄, channel structure, **154**, 232 Scanning electron microscopy InSn oxide powders, 154, 444 Scanning tunneling microscopy [(Pb,Sb)S]_{2.28}NbS₂ Franckeite-type misfit compounds: distribution of Pb and Sb atoms in (Pb,Sb)S layers, **149**, 370 Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines, mechanochemical reaction with polymeric oxovanadium(IV) complexes, 153, 9 rigid or flexible, and Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143 Seebeck coefficient $NdDyBa_{2-x}Sr_{x}Cu_{2+y}Ti_{2-y}O_{11-\delta} \ \ and \ \ NdDyCaBa_{2-x}Sr_{x}Cu_{2+y}Ti_{3-y}\\O_{14-\delta}, \ \textbf{155}, \ 216$ β -rhombohedral boron doped with metal, **154**, 13 YB₄₁Si_{1.2}, 154, 229 Selected area electron diffraction Bi_2O_3 -MoO₃ system: compounds with structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, 149, 276 Selenium Ag₈SnSe₆ chalcogenides, synthesis and characterization, 149, 338 Ba₄Nd₂Cd₃Se₁₀, synthesis and structure, **149**, 384 BaSm₄(SiO₄)₃Se, crystal structure, 155, 433 BiSeO₃Cl, crystal structure and dielectric and nonlinear optical properties, **149**, 236 CdAl₂Se₄, zone center frequencies in tetragonal phase, 153, 317 CdCr₂Se₄ spinels, electronic band structure, 155, 198 CdSe cubic nanocrystals, room-temperature synthesis in aqueous solution, 151, 241 Co_{0.844}Se nanocrystals, synthesis in nonaqueous solvent, **152**, 537 GeSe₂ three-dimensional crystals, structural transformations at high pressures and temperatures, **150**, 121 Hg₃Se₂I₂, synthesis and crystal structure, **151**, 73 $KMSe_2$ (M = Al,Ga) chalcogenides with stacking faults, synthesis and structure, **149**, 242 mesostructured 3D materials based on [Ge₄Se₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 Na_{1.5}Pb_{0.75}PSe₄ with cubic structure, flux synthesis and isostructural relationship to Na_{0.5}Pb_{1.75}GeS₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural study, 155, 250 NiTa₂Se₇, with incommensurately modulated low-temperature structure, independent \vec{q} and $2\vec{q}$ distortions in, 153, 152 $(Pr_4N)_2M(H_2O)_5[Re_6Se_8(CN)_6] \cdot H_2O$ (M = Mn,Ni), synthesis and structure, **153**, 195 $RbLn_2CuSe_4$ (Ln = Sm,Gd,Dy), $Rb_{1.5}Ln_2Cu_{2.5}Se_5$ (Ln = Gd,Dy), and $RbSm_2Ag_3Se_5$, synthesis and structures, **151**, 317 Sr₄Cu₂Mn₃O_{7.5}Se₂, synthesis and structure, **153**, 26 $TICo_{2-x}Cu_xSe_2$ ($x \sim 1$) system, incommensurate Cu/Co ordering in, 151, 260 Ln_7 VO₄Se₈ (Ln = Nd,Sm,Gd), synthesis and characterization, **154**, 564 Semiconductors mesostructured 3D materials based on [Ge₄S₁₀]⁴⁻ and [Ge₄Se₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 p-type, CeVO₄ with zircon-type structure prepared by solid-state reaction in air, 153, 174 sensitization by microcrystals of MgIn₂S₄ on wide bandgap MgIn₂O₄, 154, 476 Shear compliance TaS₃, **155**, 105 Silicate exchange with nitrate in hydrotalcite, effect of Mg:Al ratio, 151, 272 Silicon Ba₃SiI₂, synthesis, structure, and properties, 152, 460 BaSm₄(SiO₄)₃Se, crystal structure, **155**, 433 borosilicates, crystallization and structural characteristics, 154, 312 B-Si thin film, preparation by pulsed laser deposition and properties, 154, 141 CaAl₁₂Si₄O₂₇ high-pressure phase with Al₆O₁₉ clusters, synthesis and structure, **153**, 391 Cs₈Na₁₆Si₁₃₆ clathrate, synthesis and characterization, 153, 92 Cu₄Nb₅Si₄, bonding analysis, 154, 384 $K_{7.62(1)}Si_{46}$, synthesis and structure, 154, 626 $La_3Al_{0.44}Si_{0.93}S_7$, crystal structure, **155**, 433 La₃BSi₂O₁₀, crystallization and structural characteristics, 154, 312 La₅Si₂BO₁₃, synthesis and neutron diffraction study, **155**, 389 Mg₂Si, Li insertion into, reaction mechanism, 153, 386 $Rb_8Na_{16}Si_{136}$ clathrate, synthesis and characterization, 153, 92 Rb_{6.15(2)}Si₄₆, synthesis and structure, **154**, 626 SiO₂, lamellar silica synthesized by neutral amine route, structure and thermal stability, effect of addition of divalent transition metal chlorides, 149, 113 $Ln_2(SiO_4)Te$ (Ln = Nd,Sm), monoclinic and orthorhombic crystals, structure, 155, 433 SiP_2O_7 , comparison with $Na_2M_2(BO_3)_2O$ (M = Al,Ga), 154, 344 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), synthesis, crystal structure, and physical properties, **152**, 540 TbB₄₁Si_{1.2}, specific heat, **154**, 223 YB₄₁Si_{1.2}, transport phenomena, 154, 229 Y₂Si₂O₇, phase transformations in gel- and mixed-powder-derived polymorphs, X-ray diffraction and ²⁹Si MAS NMR studies, **149**, 16 ZrSiO₄, pure and doped, hyperfine characterization, 150, 14 Silver Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, synthesis and structure of molecular and extended complexes, **152**, 247 Ag(I) in Na_{2-x}Ag_xZnP₂O₇, luminescence properties, **149**, 284 Ag₂NbTi₃P₆S₂₅, crystal structure, **153**, 55 Ag_8SnE_6 (E = S,Se) chalcogenides, synthesis and characterization, 149, 338 Ag(TCNQ) and Ag(TCNQF₄) crystalline polymers, structures and magnetic properties, 152, 159 AgTi₂(PS₄)₃, crystal structure and ionic conductivity, 153, 55 incorporation into Ba₄Er₂Cu₇O_{15-δ}, structural effects, **150**, 228 $Na_{2-x}Ag_xZnP_2O_7$, Ag(I) luminescence in, 149, 284 polymeric Ag(I)-hexamethylenetetramine complexes, structure and topological diversity, **152**, 211 RbSm₂Ag₃Se₅, synthesis and structure, 151, 317 ${[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]}_n$, 151, 286 $\{ [W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2] \}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n$, 151, 286 Sintering additive free hydrothermally derived indium tin oxide powders in air, 154, 444 $Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}$ ceramics, effect of particle size, 155, 273 boron and boron carbide, 154, 194 Sodium Ca₆Sm₂Na₂(PO₄)₆F₂, crystal structure and polarized Raman spectra, 149, 308 $Cs_8Na_{16}Ge_{136}$ and $Cs_8Na_{16}Si_{136}$ clathrates, synthesis and characterization, 153, 92 hydrated sodium vanadium bronze, synthesis, 149, 443 K₂CaNaTa₃O₁₀ Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, 155, 46 Na_{2-x}Ag_xZnP₂O₇, Ag(I) luminescence in, **149**, 284 $Na_2M_2(BO_3)_2O$ (M = Al,Ga), crystal structure, comparison with other layered oxyborates and SiP_2O_7 , **154**, 344 Na₃[B₆O₉(VO₄)], synthesis and crystal structure, **150**, 342 Na₄Co₃H₂(PO₄)₄·8H₂O, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122 Na₃In(PO₄)₂, polymorphous modifications, structure, **149**, 99 Na_{3.64}Mg_{2.18}(P₂O₇)₂, crystal structure, **152**, 323 Na_{3.64}Ni_{2.18}(P₂O₇)₂, crystal structure, **152**, 323 Na₂O-B₂O₃ glass system, phase separation in, NMR study, 149, 459 Na(O₂CC \equiv CH), structure and γ -ray-induced solid-state polymerization: effect of bilayer formation on solid-state reactivity, **152**, 99 Na_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 Na_{1.5}Pb_{0.75}PSe₄ with cubic structure, flux synthesis and isostructural relationship to Na_{0.5}Pb_{1.75}GeS₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 NaSb₃O₂(PO₄)₂, synthesis and structure, 151, 21 Na₂SO₄, conductivity enhancement, review and current developments, 155, 154 Na₂SO₄-Al₂O₃ composite electrolytes, ionic conductivity, mechanism and role of preparatory parameters, **153**, 287 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, X-ray powder and electron diffraction study, **154**, 427 Na₂Ti₂Sb₂O, powder neutron diffraction: structure-property relationships, **153**, 275 Na₆(UO₂)₅(VO₄)₂O₅, synthesis and crystal structure, **155**, 342 $Na_xW_{18}O_{49}$, sodium ordering in, 151, 220 Na₂ZnP₂O₇, crystal structure, **152**, 466 $Rb_8Na_{16}Ge_{136}$ and $Rb_8Na_{16}Si_{136}$ clathrates, synthesis and characterization, 153, 92 Sr_{3.1}Na_{2.9}Bi₃O₁₂, synthesis and characterization, 152, 492 Sodium propynoate structure and γ-ray-induced solid-state polymerization: effect of bilayer formation on solid-state reactivity, **152**, 99 Sol-gel synthesis Ge-substituted SnO₂, 154, 579 $NiCo_2O_4$ prepared by, XRD, XANES, EXAFS, and XPS study, 153, 74 $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds, 151, 298 SiO₂, lamellar, by neutral amine route, effect of addition of divalent transition metal chlorides, 149, 113 Solid solutions Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, **155**, 305 Bi_{1-y}La_yO_{1.5}, monoclinic, identification and structural relationship to rhombohedral Bi-Sr-O type, **151**, 281 ${\rm Bi_{4-x}La_xTi_3O_{12}}$ (x=1,2) and ${\rm Bi_{2-x}Sr_{2+x}Ti_{1-x}Nb_{2+x}O_{12}}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 In_2O_3 – M_2O_3 (M=Y,Sc) doped with Sn, electrical, optical, and structural properties, **153**, 41 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, 155, 280 metastable hexagonal vanadium molybdate, properties and limits, 152, MO-M'O, mixing properties, semi-empirical and *ab initio* calculations, **153**, 357 $Ni_v Mo_6 Se_{8-x} S_x$, single crystal structural study, **155**, 250 nonideal, thermodynamic properties, evaluation by molecular dynamics method, **153**, 118 rutile TiO₂, redox properties of VIB transition metal ions in, XRD and EPR study, **152**, 412 series between β -Fe₂(PO₄)O and Fe₄(PO₄)₃(OH)₃, synthesis and phase characterization, **153**, 237 M_{1-x} Sm_xSO₄ (M=Ba,Sr), Sm²⁺ crystal chemistry and stability in, **154**, 535 $Ln_{1-x}Ln'_x \text{TiO}_3$ (*Ln* and Ln' = La-Sm; $0 \le x \le 1$), magnetic properties, **153**, 145 (Y,RE)Al₃(BO₃)₄ (RE = Nd,Gd,Ho,Yb,Lu), crystal growth and characterization, **154**, 317 Solvent equation of state near critical point for electron transfer reactions, spin-exchange term in, 151, 102 Solvothermal synthesis Ag_8SnE_6 (E = S,Se) chalcogenides, **149**, 338 Co_{0.844}Se nanocrystals in nonaqueous solvent, **152**, 537 Cu₂SnS₃ nanocrystals, **153**, 170 metal phosphides (metal = Co,Ni,Cu), 149, 88 γ-NiSb nanocrystals at low temperature, 155, 42 pillared 3D Mn(II) coordination network with rectangular channels, 152, 152 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, **149**, 107 Sonochemistry synthesis of HgS and PbS nanoparticles, 153, 342 Space group symmetry in design of functional crystals, 152, 191 Specific heat B₁₂P₂ wafers, **154**, 33 $Nd_{1-x}TiO_3$ perovskites, 155, 177 rare-earth hexaborides, 154, 275 $R_2 Ru_2 O_7$ (R = rare earths) pyrochlores, **152**, 441 $Sm_{1-x}TiO_3$ perovskites, **155**, 177 TbB₄₁Si_{1.2}, **154**, 223 Spin crossover in Fe(II)-1,10-phenanthroline complexes, anomalies associated with mechanical strain, role of NCS⁻ and PF₆⁻ counterions, **153**, 82 Spin dimer analysis spin exchange interactions of AV_4O_9 ($A = Ca,Sr,Cs_2,NH_2(CH_2)_4NH_2$), 153, 263 Spinels CdCr₂S₄ and CdCr₂Se₄, electronic band structure, 155, 198 $(Cd_{1-x}Mn_x)Mn_2O_4$, synthesis, stoichiometry, and electrical transport properties, **153**, 231 Co-Cu-Mg-Zn-Cr mixed oxides, synthesis and properties, **152**, 526 Li-Mn-Fe-O, Li ion distribution in, computer modeling, **153**, 310 LiMn₂O₄-based Ni-stabilized, electrochemical insertion properties of, effects of partial acid delithiation, **150**, 196 origin of 3.3 V and 4.5 V steps, TEM studies of, 155, 394 LiTi₂O₄, change to ramsdellite, Li site occupancy in, NMR study, **152**, 397 Spin exchange in extended magnetic solids $KCuF_3$, K_2CuF_4 , $KNiF_3$, K_2NiF_4 , La_2CuO_4 , and Nd_2CuO_4 , 151, 96 spin-exchange term in solvent equation of state near critical point for electron transfer reactions, **151**, 102 AV_4O_9 ($A=Ca,Sr,Cs_2,NH_2(CH_2)_4NH_2$), spin dimer analysis, 153, 263 Spin-glass behavior $SmNi_{1-x}Co_xO_3$, **150**, 145 Split atom model LuFeO₃(ZnO)_m, 150, 96 Spray pyrolysis magnetic iron oxide/mullite nanocomposite preparation, **155**, 458 Sputtered neutral mass spectrometry cation loss from BaCa_{0.393}Nb_{0.606}O_{2.91} in aqueous media leading to amorphization at room temperature, **149**, 262 Stacking fault KMQ_2 (M = Al,Ga; Q = Se,Te) chalcogenides with, synthesis and structure, **149**, 242 Stacking interactions aryl, structural mimicry by polymorphous one-dimensional tetrapyridylporphyrin coordination polymers, **152**, 253 in ladder-like Cu(II) coordination polymers, 152, 183 Strontium AlSr₂YCu₂O₇, crystal growth and structure, 149, 256 Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, 155, 305 1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi–Sr ordering, synthesis and characterization, **151**, 210 $Bi_{2-x}Sr_{2+x}Ti_{1-x}Nb_{2+x}O_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 ${\rm Ce_{1-x}SrVO_{4-0.5x}}$ with zircon-type structure, preparation by solid-state reaction in air, 153, 174 in chlorapatite, effects on topotaxial replacement by hydroxyapatite under hydrothermal conditions, **154**, 569 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies. **150.** 188 (Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z, 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488 K₂SrLaTi₂TaO₁₀ · 2H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, 155, 46 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, structural characterization, 155, $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, synthesis and crystal structure, **149**, 189 $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_{3-\delta}\square_{\delta}$ (0 \leq δ \leq 0.15), physical properties, effects of oxygen nonstoichiometry, **151**, 139 $La_{1.2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1.2}Sr_{0.8}MnO_{4+\delta}$, synthesis and characterization, **153**, 34 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, X-ray powder and electron diffraction study, **154**, 427 $Pr_{1-x}Sr_xFeO_{3-\delta}$, structure and magnetism, **150**, 233 $\text{Sm}_{1/3}\text{Sr}_{2/3}\text{FeO}_3^{}$, charge ordering and magnetotransport transitions, 153, 140 SrAl₂B₂O₇, **150**, 404 Sr_{1.25}Bi_{0.75}O₃, structure determination as function of temperature from synchrotron X-ray powder diffraction data, 150, 316 SrC₂, synthesis and crystal structure, 151, 111 Sr₂CrMoO₆ double perovskite, magnetoresistance, 155, 233 Sr_{4.5}Cr_{2.5}O₉, magnetic properties, **154**, 375 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}Q_2$ (Q=S,Se), synthesis and structure, **153**, 26 $Ln_{1.85}^{3.85}Sr_{0.15}^{2+}CuO_4$ superconductors, true tolerance factor effects in, 155, Sr₂FeNbO₆ perovskites, magnetic susceptibility and Mössbauer spectroscopy, **154**, 591 Sr₂Fe₂O₅, structural phase transition under high pressure, **155**, 381 $Sr_nFe_nO_{3n-1}$ ($n=2,4,8,\infty$) perovskites, oxygen-vacancy-ordered crystal structure, evolution and relationship to electronic and magnetic properties, **151**, 190 $Sr_4Fe_2O_6CO_3$, synthesis, crystal structure, and magnetic order, **152**, 374 $SrGa_2B_2O_7$, crystal structures, **154**, 598 β -SrGa₂O₄ and ABW-type γ -SrGa₂O₄, framework structures, **153**, 294 γ -SrHPO₄, synthesis and crystal structure, **152**, 428 Sr_{0.4}K_{0.6}BiO₃, structure determination as function of temperature from synchrotron X-ray powder diffraction data, 150, 316 Sr_{3,75}K_{1,75}Bi₃O₁₂, synthesis and characterization, **152**, 492 Sr_{1-3x/2}La_xTiO₃, A-site cation-vacancy ordering in, HRTEM study, 149, 360 $SrMn_{1-y}(B,C)_yO_{3-\delta}$, order-disorder phenomena, 149, 226 $Sr_4Mn_{3-x}Fe_xO_{10} - \frac{\delta}{\delta}$ (x = 1,1.5,2), Ruddlesden–Popper phases, properties. **155.** 96 Sr_{3.1}Na_{2.9}Bi₃O₁₂, synthesis and characterization, **152**, 492 Sr₂NiN₂, synthesis, crystal structure, and physical properties, 154, 542 Sr(OH)Br, hydroxide ion disorder in, 151, 267 SrO-Ho₂O₃-CuO_x system, phase relations, **149**, 333 M^{3+} Sr₄(PO₄)₃O (M^{3+} = Bi,La), synthesis and characterization, 149, 133 Sr₁₁Re₄O₂₄ double oxide, preparation, structure, and magnetic studies, **149**, 49 Sr₃Ru₂O₇, structural distortions, neutron diffraction study, **154**, 361 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), synthesis, crystal structure, and physical properties, **152**, 540 $Sr_{1-x}Sm_xSO_4$, Sm^{2+} crystal chemistry and stability in, **154**, 535 $Sr_2Sn(OH)_8$, hydrothermal synthesis and structure, **151**, 56 SrV_4O_9 in metastable state, synthesis and crystal structure, **149**, 414 spin exchange interactions of, spin dimer analysis, **153**, 263 Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD studies, **153**, 106 Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y, superstructure derived from, X-ray and neutronpowder diffraction, 155, 22 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La, Pr, Nd, Sm, Eu, Gd), synthesis and structure, **150**. 1 Structure, see also Band structure; Crystal structure; Electronic structure; Superstructure; Tunnel structure aluminum phosphate oxalate hybrid open framework with large circular 12-membered channels, **150**, 324 BaGa₂O₄, stuffed framework structure, 154, 612 $R_5B_2C_5$ (R = Y,Ce-Tm), **154**, 286 Bi_{0.775}La_{0.225}O_{1.5} of rhombohedral Bi-Sr-O type with polycationic substitutions for La, **149**, 341 Bi_{1-y}La_yO_{1.5} monoclinic solid solution, relationship to rhombohedral Bi-Sr-O type, **151**, 281 $Bi_{4-x}La_xTi_3O_{12}$ (x = 1,2): cation disorder in three-layer Aurivillius phases, **153**, 66 Bi₂Pb₂O₇, 149, 314 $Bi_{2-x}Sr_{2+x}Ti_{1-x}Nb_{2+x}O_{12}$ (0 < x < 0.8): cation disorder in three-layer Aurivillius phases, **153**, 66 BN nanotubes, 154, 214 boron carbide enriched in ¹⁰B, ¹¹B, and ¹³C isotopes, **154**, 79 $Ca_{2-x}Mg_xTt$ (Tt = Sn,Pb), 152, 474 CeO₂ nanoncrystals, X-ray absorption spectroscopic study, 149, 408 Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, 152, 526 Dy_6MTe_2 (M = Fe,Co,Ni), 155, 9 Fe(H₂NCH₂CH₂NH₂)MoO₄, **152**, 229 α -Fe₂O₃ substituted with Sn⁴⁺, Ti⁴⁺, and Mg²⁺, **151**, 157 framework, β -SrGa₂O₄ and ABW-type γ -SrGa₂O₄, **153**, 294 $Ga_2S_3(As_2S_3,PbS) - GeS_2 - MnS \ glasses, \ local \ structure, \ \textbf{152}, \ \textbf{388}$ Gd₂O₃-B₂O₃, **154**, 204 $(H_3NCH_2CH_2NH_3)[Fe(C_2O_4)MoO_4], 152, 229$ icosahedral boron-rich solids, defects, correlation with electronic properties, **154**, 61 $In_2O_3-M_2O_3$ (M=Y,Sc) solid solutions doped with Sn, 153, 41 intermediate cubic phase crystallized from Synroc alkoxide precursor at $800\ ^{\circ}\text{C},\ 150,\ 209$ K_{7.62(1)}Si₄₆, 154, 626 La_{0.7}Ca_{0.3}MnO_z ultrafine powders prepared by mechanical alloying, 152, 503 $\text{La}_{n+1}\text{Ni}_n\text{O}_{3n+1}$ (n=1,2,3), relationships among phases, neutron diffraction study, **152**, 517 Li_{2+x}Ti₃O₇ obtained electrochemically, **153**, 132 metal borides, molecular models of, 154, 110 Mo₂NiB₂ boride base cements with Cr and V additions, effects of Mo/B atomic ratio, **154**, 263 Na_{2-x}Ag_xZnP₂O₇, relationship to Ag(I) luminescence, **149**, 284 Na₂Ti₂Sb₂O, relationship to properties, powder neutron diffraction study, **153**, 275 NiCo2O4, XRD, XANES, EXAFS, and XPS study, 153, 74 NiTa₂Se₇, incommensurately modulated at low temperature, independent \vec{q} and $2\vec{q}$ distortions in, **153**, 152 one-dimensional uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, **154**, 635 PbBi₆O₄(PO₄)₄, **154**, 435 rare-earth oxide pyrochlores, determination by wide-angle CBED, comparison with atomistic computer simulation, **153**, 16 Rb_{6.15(2)}Si₄₆, **154**, 626 Ru pyrochlores undergoing metal-nonmetal transition, 151, 25 SiO₂, lamellar silica synthesized by neutral amine route, effect of addition of divalent transition metal chlorides, 149, 113 $Sm_{0.2}Ca_{0.8}MnO_3$ doped with Ru, correlation of micronanostructure with magnetic transitions, 155, 15 sodium propynoate, 152, 99 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_7$ $_5Q_2$ (Q = S,Se), 153, 26 α-Ti(HPO₄)₂·H₂O with intercalated heterocyclic amines, 154, 557 vanadyl phosphate intercalated with acetone, 150, 356 $YBa_2Cu_4O_8$ superconductor, HRTEM surface profile imaging, **149**, 327 $YMn_2D_{1.15}$, **154**, 398 [Zn-Al-Cl] layered double hydroxide after thermal treatment, 152, 568 ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, **155**, 312 Sulfur Ag₂NbTi₃P₆S₂₅, crystal structure, **153**, 55 Ag₈SnS₆ chalcogenides, synthesis and characterization, **149**, 338 AgTi₂(PS₄)₃, crystal structure and ionic conductivity, **153**, 55 alkali cation ligating iodocuprate(I)-based coordination networks with 1,10-dithia-18-crown-6, **152**, 271 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), synthesis and structure, **149**, 384 $BaMnS_2$, magnetic properties, **155**, 305 BaLn₂MnS₅, crystal structures and magnetic properties, 153, 330 $Ba_{1-x}Sm_xSO_4$, Sm^{2+} crystal chemistry and stability in, 154, 535 Ba_{0.93}Sr_{0.07}MnS₂, magnetic properties, 155, 305 $A_3 \text{Bi}_5 \text{Cu}_2 \text{S}_{10}$ (A = Rb, Cs), structure and conductivity, 155, 243 CdCr₂S₄ spinels, electronic band structure, 155, 198 $[(CH_3NH_3)_{0.5}(NH_4)_{1.5}]Sb_8S_{13} \cdot 2.8H_2O$, hydrothermal synthesis and crystal structure, **155**, 409 Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143 coordination polymers with 4,4'-dipyridyldisulfide, synthesis and structure, **152**, 113 Cs₂CuP₃S₉, chiral compound with chiral screw helices, preparation, structure, and characterization, 151, 326 Cu₂FeSn₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363 Cu₂FeTi₃S₈, local environment in, X-ray absorption spectra as fingerprint of, **150**, 363 Cu₂Gd_{2/3}S₂, crystal structure: interlayer short-range order of Gd vacancies, **152**, 332 Cu₂SnS₃ nanocrystals, synthesis, characterization, and properties, 153, 170 FePS₃, layered compound, intercalation reaction with 1,10-phenanthroline, **150**, 258 $Ga_2S_3(As_2S_3,PbS)$ – GeS_2 –MnS glasses, magnetic susceptibility and local structure, **152**, 388 HgS nanoparticles, sonochemical synthesis, 153, 342 Hg₃S₂I₂, synthesis and crystal structure, **151**, 73 (In_{0.5}□_{0.5})[In_{1.5}Sn_{0.5}]S₄, vacant thiospinel, reversible lithiation, pressure-sensitive modeling, **152**, 533 KBi₂CuS₄, structure and conductivity, 155, 243 $K_{1.8}Mo_9S_{11}$, band structure, **155**, 124 La₃Al_{0.44}Si_{0.93}S₇, crystal structure, **155**, 433 La₅Cu₆O₄S₇, synthesis, structure, electrical conductivity, and band structure, 155, 366 La_{~10.8}Nb₅O₂₀S₁₀, synthesis and structure, **152**, 348 Li_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Na_{0.5}Pb_{1.75}GeS₄, **153**, 158 Li₂S, reversible antifluorite to anticotunnite phase transition at high pressures, 154, 603 mesostructured 3D materials based on [Ge₄S₁₀]⁴⁻ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 $MgIn_2S_4$ microcrystals on wide bandgap $MgIn_2O_4$, semiconductor sensitization by, 154, 476 MnPS₃, intercalation compound with 1,10-phenanthroline, synthesis, characterization, and magnetic properties, **150**, 281 $A_2Mo_9S_{11}$ (A = K,Nb), band structure, **155**, 124 $[Mo_2S_2O_2]^{2+}$ molecular building block, preparation and self-condensation, 152, 78 Na_{0.5}Pb_{1.75}GeS₄ with cubic structure, flux synthesis and isostructural relationship to Na_{1.5}Pb_{0.75}PSe₄ and Li_{0.5}Pb_{1.75}GeS₄, **153**, 158 Na₂SO₄, conductivity enhancement, review and current developments, **155**, 154 Na₂SO₄-Al₂O₃ composite electrolytes, ionic conductivity, mechanism and role of preparatory parameters, **153**, 287 NCS⁻ counterion, role in anomalous spin crossover of mechanically strained Fe(II)-1,10-phenanthroline complexes, **153**, 82 Nd₁₆Ti₅S₁₇O₁₇, synthesis and structure, 152, 554 $Ni_yMo_6Se_{8-x}S_x$ solid solution, single crystal structural study, 155, 250 $(Pb(Mn,Nb)_{0.5}S_{1.5})_{1.15}$ NbS_2 , interlayer charge transfer quantitation via bond valence calculation, **155**, 1 PbS nanoparticles, sonochemical synthesis, 153, 342 [(Pb,Sb)S]_{2.28}NbS₂, distribution of Pb and Sb atoms in (Pb,Sb)S layers in, scanning tunneling and atomic force microscopic studies, **149**, 370 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153**, 195 $(Pr_4N)_2M(H_2O)_5[Re_6S_8(CN)_6] \cdot H_2O$ (M = Mn,Ni), synthesis and structure, **153**, 195 Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), synthesis and structure, X-ray single crystal and neutron powder diffraction studies, 149, 9 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n=1 to 4), superconducting cluster compounds, synthesis, structure, and theoretical studies, **155**, 417 $Rb_2Sb_8S_{13}\cdot 3.3H_2O,$ hydrothermal synthesis and crystal structure, 155, 409 SmSO₄, Sm²⁺ crystal chemistry and stability in, **154**, 535 SnS₂ single crystals, diamine intercalation compounds of, synthesis and characterization, **150**, 391 Sn-Zn-S system, mechanochemical reactions in, 153, 371 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}S_2$, synthesis and structure, 153, 26 $Sr_{1-x}Sm_xSO_4$, Sm^{2+} crystal chemistry and stability in, **154**, 535 TaS₃, interactions of sliding charge-density waves with phonons, **155**, TiS₂, intercalation of methylamines into, 155, 326 U₃S₅, uranium valency in, 150, 336 {V₁₈O₄₂(SO₄)}, extended solids composed of, synthesis, structure, and physicochemical properties, **152**, 105 $\{[W_4Ag_6S_{16}]\cdot [Ca(DEAC)_6]\}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n$, 151, 286 $\{[W_2Ag_2S_8]\cdot[Zn(4,4'-bipy)_2(DMSO)4]\cdot(DMSO)\}_n$, 151, 286 Sulfurization $MgIn_2O_4$ to form $MgIn_2S_4$, **154**, 476 Superconductivity borocarbides Ln-M-B-C (Ln = rare earths, Y; M = Ni,Pd), **154**, 114 Superconductors 2212-type, in Tl-Hg-Ba-Sr-Ca-Cu-O system, XRD studies, **153**, 106 $Ln_{1.85}^{3+}M_{0.15}^{0+}$ CuO₄, true tolerance factor effects in, **155**, 138 $ErBaSrCu_{3-x}(PO_4)_xO_y$ (x = 0.0,0.10,0.20), electron microscopy and neutron diffraction studies, **150**, 188 $(Hg,M)Sr_2(Ln,Ce)_2Cu_2O_z$, 1222-type, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 LiTi₂O₄, and related compounds, Li site occupancy in, NMR study, **152**, $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n=1 to 4), cluster compounds, synthesis, structure, and theoretical studies, **155**, 417 Sr_{1.25}Bi_{0.75}O₃ and Sr_{0.4}K_{0.6}BiO₃, structure determination as function of temperature from synchrotron X-ray powder diffraction data, **150.** 316 YBa₂Cu₄O₈, HRTEM surface profile imaging, 149, 327 Superparamagnetism manganites, 155, 116 Superstructure Bi₂Nd₄O₉ monoclinic phase, 153, 30 H_xMoO₃ bronzes, CDW superstructures, **149**, 75 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, **154**, 427 Nb₇W₁₀O₄₇ tetragonal bronze-type phase, **149**, 428 LnPdGe (Ln = La-Nd,Sm,Gd,Tb), 154, 329 Sr₂NiN₂, 154, 542 Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y-derived, X-ray and neutron-powder diffraction, 155, 22 Supramolecular interactions polymeric Ag(I)-hexamethylenetetramine complexes, 152, 211 Supramolecular isomerism polymorphous one-dimensional tetrapyridylporphyrin coordination polymers, **152**, 253 Supramolecular materials organic, polarity, 152, 49 Surfaces $YBa_2Cu_4O_8$ superconductor, profile imaging by HRTEM, **149**, 327 Symmetry-breaking transitions from GdCuAs₂ through GdCuAs_{1.15}P_{0.85} to GdCuP_{2.20}, **155**, 259 Synchrotron X-ray powder diffraction $Sr_{1.25}Bi_{0.75}O_3$ and $Sr_{0.4}K_{0.6}BiO_3$, structure determination as function of temperature, **150**, 316 SrC₂, **151**, 111 Synroc alkoxide precursor heated to 800 °C, intermediate cubic phase crystallized from, fluorite structure, **150**, 209 Synthesis, see also Hydrothermal synthesis; Solvothermal synthesis Ag(I) complexes of 4-isocyano-3,5-diisopropylbenzonitrile, molecular and extended complexes, **152**, 247 Ag₂NbTi₃P₆S₂₅ with interlocked structure, 153, 55 AgTi₂(PS₄)₃ with interlocked structures, 153, 55 apatite-related phosphates, 149, 133 $Ba_4Ln_2Cd_3S_{10}$ (Ln = Sm,Gd,Tb), **149**, 384 Ba₈Co₇O₂₁, **151**, 77 $Ba_8Ga_{16}(GaSb)_xGe_{30-2x}$ (x=2) with p-type thermoelectric cage structure, **151**, 61 Ba₂₄Ge₁₀₀, **151**, 117 $BaHf_{1-x}Zr_x(PO_4)_2$ emitting ultraviolet under X-ray excitation, **155**, 229 $Ba_4Nd_2Cd_3Se_{10}$, **149**, 384 Ba₃SiI₂, **152**, 460 1201 Bi_{0.4}Sr_{2.6}MnO_{5- δ} and 2201 Bi_{0.9}Sr_{3.1}MnO_{6- δ} with 1:1 Bi-Sr ordering, **151**, 210 BN nanotubes, 154, 214 CaAl₁₂Si₄O₂₇ phase with Al₆O₁₉ clusters at high pressure, **153**, 391 $Ca_{3.1}Cu_{0.9}RuO_6$, 153, 254 $CaErPt_3Sn_5$ and $CaLuPt_3Sn_5$ with $Yb_2Pt_3Sn_5$ -type structure, 150, 112 CaNdFe_{1/2}Nb_{3/2}O₇ pyrochlore, **154**, 483 in Ca₂Ta₂O₇-Sm₂Ti₂O₇ system, **150**, 167 CaTmPt₃Sn₅ and CaYbPt₃Sn₅ with Yb₂Pt₃Sn₅-type structure, **150**, 112 $(Cd_{1-x}Mn_x)Mn_2O_4$, **153**, 231 Cd(OH)Cl, 151, 308 CdSe cubic nanocrystals at room temperature in aqueous solution, 151, 241 Ce₂Ni₂Cd, 150, 139 (R,S)-(C₅H₁₄N₂)Co(HPO₄)₂ one-dimensional cobalt phosphate, **153**, 180 clathrates of group 14 with alkali metals, synthesis and characterization, 153, 92 [Co(4,4'-bipyridine)_{2.5}(NO₃)₂]·2phenanthrene, **152**, 280 Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, 152, 526 coordination polymers with 4,4'-dipyridyldisulfide, 152, 113 $(Cr_{1-x}TM_x)_3B_4$ (TM = Ti,V,Nb,Ta,Mo,W) large crystals, 154, 45 Cs₇Au₅O₂, **155**, 29 Cs₅Hg₁₉, **149**, 419 Cs₃Mg₂P₆O₁₇N, **153**, 185 Cu(I)-Cu(II) coordination polymers of two or three dimensions, 152, 174 $Cu_{3-x}Fe_{4+x}(PO_4)_6$, **150**, 159 CuInO₂ delafossite-type oxide, 151, 16 Cu(OH)Cl, 151, 308 diamine intercalation compounds of SnS₂ single crystals, 150, 391 Dy_6MTe_2 (M = Fe,Co,Ni), **155**, 9 Eu₁₆Bi₁₁, **155**, 168 Eu₁₆Sb₁₁, **155**, 168 EuSn₃Sb₄ and related Zintl phases, 150, 371 extended solids composed of transition metal oxide clusters, 152, 105 FeZn₁₀ and Fe₁₃Zn₃₉, **151**, 85 functionalized MCM-41 with Cu- and Mn-phenanthroline complexes, 152, 447 $GdNi_3X_2$ (X = Al,Ga,Sn), conditions for, relationship to structural, electrical, magnetic, and hydrogen absorption properties, 150, 62 A_3 Hg₂₀ (A =Rb,Cs) and A_7 Hg₃₁ (A =K,Rb), **149**, 419 Hg₆As₄BiCl₇ built of polycationic mercury-pnictide framework with trapped anions, 154, 350 HgS nanoparticles, 153, 342 Hg₆Sb₄BiBr₇ and Hg₆Sb₅Br₇, built of polycationic mercury-pnictide framework with trapped anions, 154, 350 $Hg_3Se_2I_2$ and $Hg_3S_2I_2$, **151**, 73 (Hg,M)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, **154**, 488 hydrated lithium and sodium vanadium bronzes, 149, 443 intercalates of vanadyl and niobyl phosphates with C₄ diols, 151, 225 intercalation compound of 1,10-phenanthroline with layered MnPS₃, 150, 281 KMQ_2 (M = Al,Ga; Q = Se,Te) chalcogenides with stacking faults, 149, 242 K₃Hg₁₁, **149**, 419 K_{7.62(1)}Si₄₆, **154**, 626 La_{0.7}Ca_{0.3}MnO_z ultrafine powders by mechanical alloying, **152**, 503 La₅Cu₆O₄S₇, **155**, 366 $La_{\sim 10.8}Nb_5O_{20}S_{10}$, 152, 348 La₅Re₃MnO₁₆, **151**, 31 La₅Si₂BO₁₃, 155, 389 $La_{0.813}Sr_{0.187}Cu(O,F)_{3-\delta}$, **149**, 189 $La_{1,2}Sr_{0.8}MnO_{4-\delta}$ with electron doping and $La_{1,2}Sr_{0.8}MnO_{4+\delta}$, 153, Li_{0.5}Pb_{1.75}GeS₄ with cubic structure by flux synthesis, 153, 158 β -LiVOAsO₄, **150**, 250 Mn₃Ga₅ pseudo-decagonal approximant, 153, 398 Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D incommensurate modulation, 152, 573 from molecular building blocks, 152, 1 $RE_5Mo_{32}O_{54}$ (RE = La,Ce,Pr,Nd) with trans-capped Mo_8 octahedral clusters and Mo₇-Mo₁₀-Mo₇ triclusters, 152, 403 $Na_3[B_6O_9(VO_4)]$, 150, 342 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, **151**, 122 Na_{0.5}Pb_{1.75}GeS₄ with cubic structure by flux synthesis, 153, 158 Na_{1.5}Pb_{0.75}PSe₄ with cubic structure by flux synthesis, 153, 158 NaSb₃O₂(PO₄)₂, 151, 21 $Nb_2N_{0.88}O_{0.12}$, 150, 36 Nd₁₆Ti₅S₁₇O₁₇, **152**, 554 [NH₃CH₂CH(OH)CH₃]₃·Al₃P₄O₁₆, racemic isopropanolamine as solvent and template for, 151, 145 $R_2 \text{NiB}_{10}$ (R = Y,Ce-Nd,Sm,Gd-Ho), **154**, 246 NiCo₂O₄, 153, 74 $LnNiIn_2$ (Ln = Pr,Nd,Sm), **152**, 560 $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds, preparation via different precursors, 151, 298 $\alpha - \text{Ni}(VO_3)_2 \cdot 2H_2O$ and $\text{Ni}(VO_3)_2 \cdot 4H_2O$, 152, 511 $PbBi_6O_4(XO_4)_4$ (X = P,V,As), **154**, 435 Pb₇F₁₂Cl₂: disordered modification, **149**, 56 PbS nanoparticles, 153, 342 $(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se; M = Mn,Ni), 153, $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), 153, 195 PrRhIn, 152, 560 Rb₅Au₃O₂ and Rb₇Au₅O₂, **155**, 29 $RbLn_2CuSe_4$ (Ln = Sm,Gd,Dy), **151**, 317 $Rb_{1.5}Ln_2Cu_{2.5}Se_5$ (*Ln* = Gd,Dy), **151**, 317 (Cr_{1-x}Ni_x)₃Te₄ with pseudo-NiAs-type structure, magnetic properties, Rb₂(HSO₄)(H₂PO₄) and Rb₄(HSO₄)₃(H₂PO₄), 149, 9 $Rb_{2n}(Mo_9S_{11})(Mo_{6n}S_{6n+2})$ (n = 1 to 4) superconducting cluster compounds, 155, 417 Rb_{6.15(2)}Si₄₆, 154, 626 RbSm₂Ag₃Se₅, **151**, 317 Ruddlesden-Popper tantalates and titanotantalates, 155, 46 Sb₅PO₁₀, **155**, 451 SrC₂, 151, 111 Sr_2CuMnO_3S and $Sr_4Cu_2Mn_3O_{7.5}Q_2$ (Q = S,Se), 153, 26 Sr₄Fe₂O₆CO₃, **152**, 374 $Sr_{3.75}K_{1.75}Bi_3O_{12}$, **152**, 492 Sr_{3.1}Na_{2.9}Bi₃O₁₂, **152**, 492 Sr₂NiN₂, **154**, 542 $Sr_{11}Re_4O_{24}$ double oxide, **149**, 49 $Sr_{0.93}(Si_xNb_{1-x})Nb_{10}O_{19}$ (x = 0.87), **152**, 540 Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and polyphenolic 2D motifs, 152, 130 TiB₂, electrochemical synthesis, 154, 107 $Ln_{2/3}\text{TiO}_3$ (Ln = Pr,Nd), **149**, 354 $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr,Nd,Sm,Eu,Gd), 150, 1 UFe₅Sn, 154, 551 $(UO_2)_3(VO_4)_2 \cdot 5H_2O$, **150**, 72 $M_6(UO_2)_5(VO_4)_2O_5$ (M = Na,K), 155, 342 (VO)₂P₂O₇ at 3 GPa, **153**, 124 $Ln_7VO_4Se_8$ (Ln = Nd,Sm,Gd), **154**, 564 $\{[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]\}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n$, 151, 286 W carbides by temperature programmed reaction with CH₄-H₂ mixtures, 154, 412 $W_2O_3 \cdot P_2O_7$ with empty tunnel structure, 155, 112 Yb₅In₂Sb₆ Zintl phase with narrow band gap, **155**, 55 YMn₂D₂ single phase, in situ neutron diffraction study, **150**, 183 discrete molybdenum oxide-based building blocks as, in control of growth of solid-state materials, 152, 57 Т Tantalum Ba₂LuTaO₆, Yb³⁺ doped in, EPR study, **150**, 31 Ba₂YbTaO₆ with ordered perovskite structure, magnetic susceptibility, **150,** 31 Ca₂Ta₂O₇-Sm₂Ti₂O₇ system, syntheses in, structures, and crystal chemistry, 150, 167 $(Cr_{1-x}Ta_x)_3B_4$ large crystals, synthesis and analysis, 154, 45 Ge-Ta-Zr system, M₅Ge₄ compounds in, structure-composition relations and fractional site occupancy, 150, 347 $Na_{1-x}Sr_xTaO_3$ (O < $x \le 0.4$) with perovskite structure, X-ray powder and electron diffraction study, 154, 427 NiTa₂Se₇, with incommensurately modulated low-temperature structure, independent \vec{a} and $2\vec{a}$ distortions in, 153, 152 Ruddlesden-Popper phase tantalates and titanotantalates, synthesis, proton exchange, and topochemical dehydration, 155, 46 TaB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 TaCl₆ and TaOCl₃, compound with intercalated graphite, structural analysis with molecular simulations, 149, 68 TaS₃, interactions of sliding charge-density waves with phonons, 155, 105 Tautomerism vanadyl phosphate intercalated with acetone, 150, 356 Tellurium Bi_2TeO_5 , $Bi_2Te_2O_7$, and α - and β - $Bi_2Te_4O_{11}$, IR spectra, 152, 392 154, 356 Cu_{2-x} Te, preparation by microwave heating, 154, 530 LiH₅TeO₆, 150, 410 Dy_6MTe_2 (M = Fe,Co,Ni), synthesis, structure, and bonding, 155, 9 $Nd_4Co_3O_{10+\delta}$ and $Nd_4Ni_3O_{10-\delta}$, **151**, 46 HgTe, preparation by microwave heating, 154, 530 Ni effects on calcium phosphate formation, 151, 163 $KMTe_2$ (M = Al,Ga) chalcogenides with stacking faults, synthesis and $LnNiO_3$ (Ln = Pr,Nd,Sm) polycrystalline compounds prepared via difstructure, 149, 242 ferent precursors, 151, 298 LaTe₂, crystal and electronic band structure, **149**, 155 piperazinium(2+) selenate monohydrate, 150, 305 $Rb_2[B_4O_5(OH)_4] \cdot 3.6H_2O$, **149**, 197 LiH₅TeO₆, preparation, crystal structure, vibrational spectra, and ther-[Zn-Al-Cl] layered double hydroxide, 152, 568 mal behavior, **150**, 410 $Ln_2(SiO_4)$ Te (Ln = Nd,Sm), monoclinic and orthorhombic crystals, Thermal conductivity structure, 155, 433 Ba_6Ge_{25-x} , $Ba_6Ge_{23}Sn_2$, and $Ba_6Ge_{22}In_3$, 153, 321 Ti₅Te₄, compounds structurally related to, bonding and electron count- β -rhombohedral boron modified isotopically, **154**, 296 ing in, theoretical study, 154, 384 Yb₅In₂Sb₆ Zintl phase with narrow band gap, **155**, 55 TlTe, phase transition: crystal structure, 149, 123 Thermal decomposition carbonates, NiCo2O4 prepared by, XRD, XANES, EXAFS, and XPS Temperature effects $Sr_{1.25}Bi_{0.75}O_3$ and $Sr_{0.4}K_{0.6}BiO_3$ structures, synchrotron X-ray powder study, 153, 74 diffraction study, 150, 316 intercalation compounds of anionic oxalato complexes with layered TIF crystal structure, 150, 266 double hydroxides, 153, 301 Temperature-programmed reaction $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O (M = K,NH_4), 150, 81$ with CH₄-H₂ mixtures, in synthesis of tungsten carbides, 154, 412 polyoxotungstates, in preparation of tungsten bronzes, 149, 378 seven-coordinated diaquasuccinatocadmium(II) bidimensional polymer, Terbium Ba₄Tb₂Cd₃S₁₀, synthesis and structure, 149, 384 153, 1 $(ZrO_2)_{0.8}$ - $(\alpha$ -Fe₂O₃)_{0.2} powder for gas sensing applications, 155, 320 fluorite-type oxides containing, lattice oxygen transfer in, 155, 129 Tb_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bond-Thermal expansion $(La_{1-x}Ca_x)CrO_3$, **149**, 320 ing, 152, 478 TbB_6 negative, in $Y_2(WO_4)_3$, **149**, 92 interband transitions, IR-active phonons, and plasma vibrations, 154, Thermal stability Bi₂Pb₂O₇ with pyrochlore structure, **149**, 314 magnetic entropy, 154, 275 CaRh₂O₄, 150, 213 TbB₄₁Si_{1,2}, specific heat, **154**, 223 $(Cd_{1-x}Mn_x)Mn_2O_4$, 153, 231 TbCo₄B, magnetic properties, 154, 242 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, **155**, 280 Tb₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical propmetastable hexagonal vanadium molybdate solid solutions, 152, 353 erties, 154, 246 SiO₂, lamellar silica synthesized by neutral amine route, effect of addi-TbPdGe, order of Pd and Ge atoms in, 154, 329 tion of divalent transition metal chlorides, 149, 113 $(UO_2)_3(VO_4)_2 \cdot 5H_2O$, **150**, 72 7,7,8,8-Tetracyanoquinodimethanide Ag(TCNQ) crystalline polymers, structures and magnetic properties, Thermal treatment **152,** 159 effect on synthesis of single-phase YMnD2, in situ neutron diffraction 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethanide study, 150, 183 Ag(TCNQF₄) crystalline polymers, structures and magnetic properties, Thermodynamics carbon tetrachloride-neopentane system, 154, 390 **152**, 159 chemical vapor deposition of borides, 154, 157 Tetrapyridylporphyrin polymorphous one-dimensional coordination polymers structurally Hf-B-C system: phase equilibria, 154, 257 mimicking aryl stacking interactions, 152, 253 metallic powder and alloy preparation in polyol media, 154, 405 nonideal solid solutions, evaluation by molecular dynamics method, 153, Thallium $TlCo_{2-x}Cu_xSe_2$ (x ~ 1) system, incommensurate Cu/Co ordering in, 118 151, 260 Thermoelectric power boron and boron phosphide films, 154, 26 TIF, crystal structures, 150, 266 Tl-Hg-Ba-Sr-Ca-Cu-O system, 2212-type superconductors in, XRD boron thin film, 154, 153 studies, 153, 106 $B_{12}P_2$ wafers, **154**, 33 Tl₂Nb₂O_{6+x} phases with pyrochlore structure, structure and properties, $Nd_{1-x}TiO_3$ perovskites, 155, 177 **155**, 225 $Sm_{1-x}TiO_3$ perovskites, 155, 177 Tl_{0.75}Sr_{1.8}Ba_{0.2}CuO_y, superstructure derived from, X-ray and neutron-Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55 powder diffraction, 155, 22 Thermoelectric properties $Tl(Ln_2Sr_2)Ni_2O_9$ (Ln = La,Pr,Nd,Sm,Eu,Gd), synthesis and structure, Ba_6Ge_{25-x} , $Ba_6Ge_{23}Sn_2$, and $Ba_6Ge_{22}In_3$, 153, 321 boron and boron phosphide films, 154, 26 TITe, phase transition: crystal structure, 149, 123 clathrates, 149, 455 TlZn(PO₃)₃, structure and luminescence, 154, 584 In₄Sn₃O₁₂ substituted with Y and Ti, 153, 349 Thermal analysis isoelectronically substituted (ZnO)₅In₂O₃, 150, 221 anion-exchanged Mg-Al hydrotalcites, effects of guest-host interactions, Mg-Fe-O system, 149, 33 155, 332 β -rhombohedral boron doped with metal, **154**, 13 B₁₂P₂ wafers, **154**, 33 Thermogravimetry Cs₂CuP₃S₉, chiral compound with chiral screw helices, 151, 326 Pr₂O₃ redox reaction in ZnO sintered ceramics, 149, 349 N,N'-dimethylpiperazinium(2+) selenate dihydrate, 150, 305 Pr₂O₃-Co-Co₂O₃ system at 1100 and 1150°C, **151**, 12 GaPO₄ structural phase transformations, 149, 180 Thermopower Gd₂O₃-B₂O₃, 154, 204 UNi_{1.9}Sn single crystals, 149, 120 Thin films boron, preparation and thermoelectric power, **154**, 153 boron-silicon, preparation by pulsed laser deposition and properties, 154, 141 Thiospinels $(In_{0.5}\square_{0.5})[In_{1.5}Sn_{0.5}]S_4$, reversible lithiation, pressure-sensitive modeling, **152**, 533 Thorium Th_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates. **149**, 378 Thulium $CaTmPt_3Sn_5$, synthesis, $Yb_2Pt_3Sn_5$ -type structure, and magnetic measurements, 150, 112 $\text{Tm}_5 M_2 X (M = \text{Ni,Pd}; X = \text{Sb,Bi})$ pnictides, crystal structure and bonding, **152**, 478 Tight-binding calculations Ti₅Te₄-related compounds, **154**, 384 Tin Ag_8SnE_6 (E = S,Se) chalcogenides, synthesis and characterization, 149, 338 Ba₆Ge₂₃Sn₂, structure and thermoelectric properties, 153, 321 CaErPt₃Sn₅ and CaLuPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112 Ca_{2-x}Mg_xSn, structure, resistivity, and magnetic susceptibility, **152**, 474 CaTmPt₃Sn₅ and CaYbPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, **150**, 112 Cu₂FeSn₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363 Cu₂SnS₃ nanocrystals, synthesis, characterization, and properties, 153, 170 EuSn₃Sb₄ and related metallic Zintl phases, synthesis, structure, and resistivity. **150**, 371 Ga₂O₃-In₂O₃-SnO₂ system, tunneled intergrowth structures, **150**, 294 GdNi₃Sn₂, structural, electrical, magnetic, and hydrogen absorption properties, relationship to synthesis conditions, **150**, 62 (In_{0.5}□_{0.5})[In_{1.5}Sn_{0.5}]S₄, vacant thiospinel, reversible lithiation, pressure-sensitive modeling, **152**, 533 $In_2O_3-M_2O_3$ (M=Y,Sc) solid solutions doped with, electrical, optical, and structural properties, **153**, 41 In₄Sn₃O₁₂ substituted with Y and Ti, structure and thermoelectric properties, **153**, 349 InSn oxide powders, hydrothermally derived, sintering in air, **154**, 444 Sn⁴⁺, α-Fe₂O₃ substituted with, structural and magnetic properties, neutron diffraction and Mössbauer spectroscopic studies, **151**, 157 ¹¹⁹Sn, dopant atoms in Ca₂Fe₂O₅, hyperfine interactions and dynamic characteristics, 151, 313 A_2T_2 Sn (A = Ce,U; T = Ni,Pd), band magnetism, local spin density functional calculations, **149**, 449 SnBr₂, crystal structure, **149**, 28 SnCl₂, inert pair effects: crystal structure of SnBr₂, 149, 28 SnO_2 , homogeneous Ge-substituted, sol-gel synthesis and characterization, **154**, 579 SnS₂ single crystals, diamine intercalation compounds of, synthesis and characterization, **150**, 391 Sn-Zn-S system, mechanochemical reactions in, 153, 371 Sr₂Sn(OH)₈, hydrothermal synthesis and structure, 151, 56 UFe₅Sn, synthesis, crystal structure, and magnetic properties, **154**, 551 UNi_{1.9}Sn single crystals, growth, crystal structure, and thermopower, **149**, 120 zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions $R_4{\rm N}^+$ ($R=n{\rm Pr},n{\rm Bu},n{\rm Pen}$) as structure directors for, **152**, 286 Titanium Ag₂NbTi₃P₆S₂₅, crystal structure, **153**, 55 AgTi₂(PS₄)₃, crystal structure and ionic conductivity, 153, 55 BaTiO₃, flux additions in, overview and prospects, 155, 86 $\mathrm{Bi}_{4-x}\mathrm{La}_{x}\mathrm{Ti}_{3}\mathrm{O}_{12}$ (x=1,2), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 $\text{Bi}_{2-x}\text{Sr}_{2+x}\text{Ti}_{1-x}\text{Nb}_{2+x}\text{O}_{12}$ (0 < x < 0.8), structure: cation disorder in three-layer Aurivillius phases, **153**, 66 Ca₂Ta₂O₇-Sm₂Ti₂O₇ system, syntheses in, structures, and crystal chemistry, **150**, 167 Ce_{1-x}Nd_xTiO₃, magnetic properties, **153**, 145 $Ce_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145 $(Cr_{1-x}Ti_x)_3B_4$ large crystals, synthesis and analysis, 154, 45 Cu₂FeTi₃S₈, local environment in, X-ray absorption spectra as fingerprint of, 150, 363 ACu₃Ti₃FeO₁₂, dielectric constants, 151, 323 ACu₃Ti₄O₁₂, dielectric constants, **151**, 323 (Hg,Ti)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488 In₂O₃-TiO₂-MgO system at 1100 and 1350°C, phase relations, **150**, 276 In₄Sn₃O₁₂ substituted with, structure and thermoelectric properties, **153**, 349 $K_2Ca_2Ta_2TiO_{10}\cdot 0.8H_2O$ and $K_2SrLaTi_2TaO_{10}\cdot 2H_2O$ Ruddlesden-Popper phases, synthesis, proton exchange, and topochemical dehydration, **155**, 46 LaB₆-(Ti,Zr)B₂ alloys, eutectic crystallization, 154, 165 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Cr_{3y}O_3$, crystal chemistry and conductivity, 155, 280 $La_{1-x}Sm_xTiO_3$ ($0 \le x \le 1$) solid solutions, magnetic properties, 153, 145 $La_{1-x}Sr_xCr_{1-x}Ti_xO_3$ perovskite series, structural characterization, **155**, 455 $LiTi_2O_4$ superconductor and related compounds, Li site occupancy in, NMR study, 152, 397 Li₂Ti₃O₇ H phase, engineered scavenger compound, structural characterization, 152, 546 Li_{2+x}Ti₃O₇, electrochemically obtained, structural study, **153**, 132 Na₂Ti₂Sb₂O, powder neutron diffraction: structure-property relationships, **153**, 275 $NdDyBa_{2-x}Sr_xCu_{2+y}Ti_{2-y}O_{11-\delta} \ \ and \ \ NdDyCaBa_{2-x}Sr_xCu_{2+y}Ti_{3-y}\\O_{14-\delta}, \ defect \ chemistry \ and \ electrical \ properties, \ 155, \ 216$ $Nd_{1-x}TiO_3$ perovskites, metal-insulator phenomena, 155, 177 Nd₁₆Ti₅S₁₇O₁₇, synthesis and structure, **152**, 554 $0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O_3-0.6Pb(Zn_{1/3}Nb_{2/3})O_3]-0.1PbTiO_3, \\ \ tion\ via\ mechanically\ activated\ nucleation\ and\ growth,\ \textbf{154},\ 321$ Pb(Zr_{0.52}Ti_{0.48})O₃, formation via mechanically activated nucleation and growth, **154**, 321 $\Pr_{1-x} Nd_x TiO_3$ (0 $\leq x \leq$ 1) solid solutions, magnetic properties, 153, 145 $Pr_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$) solid solutions, magnetic properties, 153, 145 $Sm_{(1-x)}Gd_xTiO_3$, magnetism, **154**, 619 $Sm_{1-x}TiO_3$ perovskites, metal-insulator phenomena, 155, 177 $Sr_{1-3x/2}La_xTiO_3$, A-site cation-vacancy ordering in, HRTEM study, 149, 360 Ti⁴⁺, α-Fe₂O₃ substituted with, structural and magnetic properties, neutron diffraction and Mössbauer spectroscopic studies, **151**, 157 Ti(IV)-aryloxide network materials with 4,4'-biphenoxide and polyphenolic 2D motifs, synthesis and characterization, **152**, 130 chemical and electrochemical behavior in cryolite-alumina melt and in molten aluminum, **154**, 107 chemical vapor deposition, thermodynamic estimation, 154, 157 α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, **154**, 557 Ti-Ni-Al-N and Ti-Ni-Al-O systems, experimental studies, 155, 71 TiO2, anatase M_3O_5 intergrowth structures formed during low-temperature oxidation of anosovite, **150**, 128 phase transformations induced by ball-milling, kinetics and mechanisms, 149, 41 TiO₂, rutile solid solutions, redox behavior of VIB transition metal ions in, XRD and EPR study, 152, 412 $Ln_{1-x}Ln'_x TiO_3$ (*Ln* and Ln' = La-Sm; $0 \le x \le 1$) solid solutions, magnetic properties, **153**, 145 $Ln_{2/3}$ TiO₃ (Ln = Pr,Nd), synthesis and magnetic properties, **149**, 354 Ti₃Rh₂In₃, structure, chemical bonding, and properties, **150**, 19 TiS₂, intercalation of methylamines into, **155**, 326 Ti₅Te₄, compounds structurally related to, bonding and electron counting in, theoretical study, **154**, 384 α-Titanium hydrogenphosphate α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, **154**, 557 Tolerance factor effects in $Ln_{1.85}^{3+}M_{0.15}^{2+}$ CuO₄ superconductors, **155**, 138 Topochemical dehydration Ruddlesden-Popper tantalates and titanotantalates, **155**, 46 Topology polymeric Ag(I)-hexamethylenetetramine complexes, **152**, 211 Transition metals doping effects in YB₆₆, 154, 54 Transmission electron microscopy Bi_2O_3 -MoO₃ system: compounds with structure based on $[Bi_{12}O_{14}]_{\infty}$ columns, 149, 276 cation loss from BaCa_{0.393}Nb_{0.606}O_{2.91} in aqueous media leading to amorphization at room temperature, **149**, 262 $LiMn_2O_4$ -based spinels: origin of 3.3 V and 4.5 V steps, **155**, 394 $Li_2Ti_3O_7$ H phase engineered scavenger compound, **152**, 546 $ScB_{17}C_{0.25}$, **154**, 130 Trimethylamine intercalation into TiS₂, 155, 326 Tris(methylammonium)nonachlorodibismuthate (III) low-temperature phase transition and structural relationships, **155**, 286 Tungsten Ce_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates, **149**, 378 $(Cr_{1-x}W_x)_3B_4$ large crystals, synthesis and analysis, 154, 45 (Hg,W)Sr₂(Ln,Ce)₂Cu₂O_z 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, **154**, 488 $Na_xW_{18}O_{49}$, sodium ordering in, 151, 220 ${ m Nb_7W_{10}O_{47}}$ tetragonal bronze-type phase, superstructure and twinning, 149, 428 Th_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates, **149**, 378 U_xWO_3 bronze, preparation by thermal degradation of polyoxotungstates, 149, 378 $\{[W_4Ag_6S_{16}] \cdot [Ca(DEAC)_6]\}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n$, 151, 286 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO)\}_n$, 151, 286 W_5 As₄, electronic structure, **154**, 384 W carbides, synthesis by temperature programmed reaction with CH₄-H₂ mixtures, **154**, 412 W ions in rutile TiO₂, redox properties, XRD and EPR study, 152, 412 WO₃, reduction-carburization by CH₄-H₂ mixture, 154, 412 RE_xWO₃ (RE = La,Nd) bronze synthesized under high pressure, X-ray diffraction and electron microscopy, **154**, 466 $W_2O_3 \cdot P_2O_7$ with empty tunnel structure, stabilization, **155**, 112 $Y_2(WO_4)_3$, negative thermal expansion in, **149**, 92 ZnO-WO₃ fluxes, effects on dieletric properties of BaTiO₃, 155, 86 Tunnel structure $Ba_{1+x}V_8O_{21}$ bronze, **150**, 330 empty, W₂O₃·P₂O₇ with, stabilization, 155, 112 Ga₂O₃-In₂O₃-SnO₂ system, **150**, 294 PbVO₂PO₄, α -layered and β -tunnel structures, **149**, 149 Twinning Nb₇W₁₀O₄₇ tetragonal bronze-type phase, **149**, 428 U Ultraviolet emission by $BaHf_{1-x}Zr_x(PO_4)_2$ under X-ray excitation, 155, 229 Ultraviolet-visible spectroscopy $(C_2H_{10}N_2)[Ni(H_2O)_6](HPO_4)_2$, 154, 460 $Cs_2CuP_3S_9$, chiral compound with chiral screw helices, **151**, 326 α - and β -[$Cu_2X(C_5H_3N_2O_2)_2(H_2O)$] (X = Cl,Br), **152**, 174 Hranium 1D uranium oxyfluorides built from edge-sharing [UO₂F₅] pentagonal bipyramids, hydrothermal syntheses, structures, and fluorescence spectroscopy, 154, 635 UFe₅Sn, synthesis, crystal structure, and magnetic properties, **154**, 551 UNi_{1.9}Sn single crystals, growth, crystal structure, and thermopower, **149**, 120 $(UO_2)_3(VO_4)_2 \cdot 5H_2O$, synthesis and crystal structure, 150, 72 $M_6(\mathrm{UO}_2)_5(\mathrm{VO}_4)_2\mathrm{O}_5$ ($M=\mathrm{Na},\mathrm{K}$), synthesis and crystal structure, 155, 342 U₃S₅, uranium valency in, **150**, 336 U_2T_2Sn (T = Ni,Pd), band magnetism, local spin density functional calculations, **149**, 449 U_xWO₃ bronze, preparation by thermal degradation of polyoxotungstates, 149, 378 ٧ Valence intermediate, in Ce₂Ni₂Cd, **150**, 139 uranium in U₃S₅, 150, 336 Valence electron count in compounds structurally related to Ti₅Te₄, theoretical study, **154**, 384 Vanadium $Ba_{1+x}V_8O_{21}$ bronze with tunnel structure, hydrothermal synthesis and crystal structure, **150**, 330 $Ba_6[V_{10}O_{30}(H_2O)] \cdot 2.5H_2O$ with unusual arrangement of V^{IV} -O polyhedra, hydrothermal synthesis and crystal structure, **151**, 130 $BiMg_2VO_6$, variable-temperature X-ray diffraction study, **149**, 143 $Bi_{6.67}O_4(VO_4)_4$, existence of, **154**, 435 $\mathrm{Bi_{0.85}Pr_{0.105}V_{0.045}O_{1.545}}$ ceramics, sintering and conductivity, effect of particle size, **155**, 273 Ce_{1-y}Bi_yVO₄ with zircon-type structure, preparation by solid-state reaction in air, **153**, 174 CeVO₄ and Ce_{1-x}MVO_{4-0.5x} (M = Ca,Sr,Pb) with zircon-type structure, preparation by solid-state reaction in air, **153**, 174 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514 (C₄H₁₂N₂)[(VO)(VO₂)₂(H₂O)(PO₄)₂], hydrothermal synthesis and characterization, **154**, 514 $(Cr_{1-x}V_x)_3B_4$ large crystals, synthesis and analysis, 154, 45 (Hg,V)Sr₂(Ln,Ce)₂Cu₂O₂ 1222-type superconductors, synthesis, X-ray diffraction, and magnetic susceptibility, 154, 488 hydrated lithium and sodium vanadium bronzes, synthesis, 149, 443 LaVO₄, hydrothermal synthesis and crystal structure, **152**, 486 LaV₃O₉, hydrothermal synthesis and crystal structure, **152**, 486 β-LiVOAsO₄, synthesis, structure, and physical studies, **150**, 250 Mo₂NiB₂ boride base cements with V additions, mechanical properties and structure, effects of Mo/B atomic ratio, **154**, 263 $Na_3[B_6O_9(VO_4)]$, synthesis and crystal structure, **150**, 342 $(NH_4)_{0.13}V_{0.13}Mo_{0.87}O_3$ solid solution, properties, 152, 353 α-Ni(VO₃)₂·2H₂O and Ni(VO₃)₂·4H₂O, synthesis and crystal structure, **152**, 511 PbBi₆O₄(VO₄)₄, existence of, **154**, 435 PbVO₂PO₄, α -layered and β -tunnel structures, **149**, 149 polymeric oxovanadium(IV) complexes, mechanochemical reaction with Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines. 153, 9 β -rhombohedral boron doped with modulated photocurrent measurements, 154, 307 thermoelectric properties, 154, 13 SrV_4O_9 in metastable state, synthesis and crystal structure, **149**, 414 $(UO_2)_3(VO_4)_2 \cdot 5H_2O$, synthesis and crystal structure, **150**, 72 $M_6(\text{UO}_2)_5(\text{VO}_4)_2\text{O}_5$ (M = Na,K), synthesis and crystal structure, 155, 342 vanadyl phosphate intercalates with acetone, structural analysis, 150, 356 with C₄ diols, preparation and characterization, 151, 225 V₃As₂, bonding analysis, 154, 384 (V₂O₇)⁴⁻, Mg-Al hydrotalcites exchanged with, properties, effects of guest-host interactions, **155**, 332 AV_4O_9 ($A = Ca,Sr,Cs_2,NH_2(CH_2)_4NH_2$), spin exchange interactions of, spin dimer analysis, **153**, 263 $(V^{IV}O)_2(H_2O)\{O_3P-(CH_2)_3-PO_3\} \cdot 2H_2O$, hydrothermal synthesis, structure, and magnetic behavior, **155**, 238 $\{V_{18}O_{42}(XO_4)\}\ (X = V,S,Cl)$, extended solids composed of, synthesis, structure, and physicochemical properties, **152**, 105 (VO)₂P₂O₇, single crystal growth at 3 GPa, 153, 124 Ln_7 VO₄Se₈ (Ln = Nd,Sm,Gd), synthesis and characterization, **154**, 564 ZrSiO₄ doped with, hyperfine characterization, **150**, 14 Vibration frequencies boron compounds, quasi-classical determination, 154, 148 ### W Water Ba₆[V₁₀O₃₀(H₂O)] · 2.5H₂O with unusual arrangement of V^{IV}-O polyhedra, hydrothermal synthesis and crystal structure, **151**, 130 $_{\infty}^{3}$ [Cd(pdc)(H₂O)] and $_{\infty}^{3}$ [Cd₃(pdc)₂(H₂O)₂], synthesis, structures, and properties, **152**, 236 [(CH $_3$ NH $_3$) $_{0.5}$ (NH $_4$) $_{1.5}$]Sb $_8$ S $_{13} \cdot 2.8$ H $_2$ O, hydrothermal synthesis and crystal structure, **155**, 409 $(C_4H_{12}N_2)(H_3O)[(VOPO_4)_4(H_2O)H_2PO_4] \cdot 3H_2O$, hydrothermal synthesis and characterization, **154**, 514 (C₂H₁₀N₂)[Ni(H₂O)₆](HPO₄)₂, hydrothermal synthesis, crystal structure, and spectroscopic properties, **154**, 460 $(C_4H_{12}N_2)[(VO)(VO_2)_2(H_2O)(PO_4)_2]$, hydrothermal synthesis and characterization, **154**, 514 $$\begin{split} &[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}, \text{ isolation and transformation to} \\ &[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}, \textbf{150}, 417 \end{split}$$ Co(NCS)₂·xH₂O, inorganic-organic coordination polymers generated from, **155**, 143 α- and β-[Cu₂X(C₅H₃N₂O₂)₂(H₂O)] (X = Cl,Br), synthesis and characterization, **152**, 174 hydrated lithium and sodium vanadium bronzes, synthesis, 149, 443 K₂Ca₂Ta₂TiO₁₀·0.8H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46 K₂MnF₅·H₂O, neutron diffraction study, **150**, 104 K₂SrLaTi₂TaO₁₀·2H₂O Ruddlesden-Popper phase, synthesis, proton exchange, and topochemical dehydration, **155**, 46 $La(H_2O)_2M(C_2O_4)_2 \cdot H_2O$ ($M = K, NH_4$), crystal structure and thermal behavior, **150**, 81 Na₄Co₃H₂(PO₄)₄·8H₂O, hydrothermal synthesis, crystal structure, and magnetic properties, **149**, 292 Na₂[(HO₃PCH₂)₃NH]1.5H₂O, synthesis and structure, **151**, 122 [N₂C₄H₁₂]Al₂(PO₄)(HPO₄)(C₂O₄)H₂O hybrid open framework with large circular 12-membered channels, synthesis and structure, **150**, 324 $\alpha\text{-Ni}(VO_3)_2 \cdot 2H_2O$ and Ni(VO_3)_2 \cdot 4H_2O, synthesis and crystal structure, **152**, 511 $(Pr_4N)_2M(H_2O)_5[Re_6X_8(CN)_6] \cdot H_2O$ (X = S,Se; M = Mn,Ni), synthesis and structure, **153**, 195 $(Pr_4N)_2M(H_2O)_4[Re_6S_8(CN)_6]$ (M = Mn,Ni), synthesis and structure, **153**, 195 Rb₂[B₄O₅(OH)₄] · 3.6H₂O, crystal structure and thermal behavior, **149**, 197 Rb₂Sb₈S₁₃·3.3H₂O, hydrothermal synthesis and crystal structure, 155, 409 α-Ti(HPO₄)₂·H₂O, intercalation of heterocyclic amines into, structural and calorimetric study, **154**, 557 (UO₂)₃(VO₄)₂·5H₂O, synthesis and crystal structure, 150, 72 (V^{IV}O)₂(H₂O){O₃P-(CH₂)₃-PO₃}·2H₂O, hydrothermal synthesis, structure, and magnetic behavior, **155**, 238 zeolite-like heterobimetallic cyanide frameworks, synthesis, quaternary ions R_4N^+ (R = nPr, nBu, nPen) as structure directors for, **152**, 286 $Zn_4(PO_4)_2(HPO_4)_2 \cdot 0.5(C_{10}H_{28}N_4) \cdot 2H_2O$, hydrothermal synthesis and crystal structure, **154**, 368 ZrPOF-n family with 2D and 3D structure types, synthesis and crystal structures, 149, 21 Wide-angle CBED rare-earth oxide pyrochlores, comparison with results of atomistic computer simulation, 153, 16 Workshop on the Present Status and Future Developments of Solid State Chemistry and Materials, 149, 3 Worm holes surfactant-templated three-dimensional disordered frameworks perforated with, **152**, 21 Χ X-ray absorption near-edge structure CeO₂ nanocrystals, 149, 408 NiCo₂O₄, 153, 74 $Sr_4Mn_{3-x}Fe_xO_{10-\delta}$ (x = 1,1.5,2) Ruddlesden–Popper phases, 155, 96 X-ray absorption spectroscopy Cd_{1-δ}Mn₂O_y, Mn-K edge study of crystal chemistry, **149**, 252 CeO₂ nanocrystals, **149**, 408 complex chalcogenides, as fingerprint of local environment, 150, 363 X-ray diffraction, see also Powder X-ray diffraction BaBi₃O_{5.5}: crystal growth and structure, **152**, 435 BiMg₂VO₆ at different temperatures, **149**, 143 (1 - x)Bi₂O₃·xCaO (0.20 < x < 0.29) α'_1 and α''_1 fluorite-related phases, **149**, 218 BN at high pressure, 154, 280 Ca_{4.78}Cu₆O_{11.60} crystal structure, **151**, 170 carbonate apatite with A-site substitutions, 155, 292 charge-density-wave state of NiTa_{1.98}Nb_{0.02}Se₇, **153**, 152 $[Co(4,4'-bipyridine)_{2.5}(NO_3)_2] \cdot 2phenanthrene, 152, 280$ Cs₂CoCl₄ at high pressure, 153, 212 Cs₂CuCl₄ at high pressure, **153**, 212 $Cu_2Gd_{2/3}S_2$: interlayer short-range order of Gd vacancies, **152**, 332 LiIn(MoO₄)₂, **154**, 498 Mo_{0.16}Bi_{0.84}O_{1.74} high-temperature cubic fluorite-type phase with 3D incommensurate modulation, **152**, 573 Mo₂NiB₂ boride base cements with Cr and V additions: effects of Mo/B atomic ratio, **154**, 263 Na₃In(PO₄)₂ polymorphous modifications, 149, 99 $Na_{3.64}Mg_{2.18}(P_2O_7)_2$ and $Na_{3.64}Ni_{2.18}(P_2O_7)_2$, **52**, 323 $[NH_3(CH_2)_3NH_3]_{0.5}[M(OH)AsO_4]$ (M = Ga,Fe), 155, 37 $NiCo_2O_4$, 153, 74 Ni effects on calcium phosphate formation, 151, 163 pillared 3D Mn(II) coordination network with rectangular channels, 152, 152 RP_5O_{14} (R = La, Nd, Sm, Eu, Gd), **150**, 377 Pr₂O₃ redox reaction in ZnO sintered ceramics at high temperature, **149**, 349 $Rb_2(HSO_4)(H_2PO_4)$ and $Rb_4(HSO_4)_3(H_2PO_4)$ single crystals, **149**, 9 $ScB_{17}C_{0.25}$, single-crystal study, **154**, 130 superconductors of 2212 type in Tl-Hg-Ba-Sr-Ca-Cu-O system, 153, ${\rm TiO_2}$ rutile solid solutions: redox behavior of VIB transition metal ions, 152, 412 (VO)₂P₂O₇ phase grown at 3 GPa, 153, 124 Y₂Si₂O₇ phase transformations in gel- and mixed-powder-derived polymorphs, 149, 16 [Zn-Al-Cl] layered double hydroxide after thermal treatment, simulation, 152, 568 ZrO₂ nanocrystals: crystallite size effect on tetragonal-monoclinic transition, 149, 399 X-ray phosphors $BaHf_{1-x}Zr_x(PO_4)_2$ emitting ultraviolet under X-ray excitation, 155, 229 X-ray photoelectron spectroscopy cation loss from $BaCa_{0.393}Nb_{0.606}O_{2.91}$ in aqueous media leading to amorphization at room temperature, $149,\,262$ NiCo₂O₄, 153, 74 U₃S₅: uranium valency, **150**, 336 #### Υ #### Ytterbium Ba₂YbTaO₆ with ordered perovskite structure, magnetic susceptibility, **150**, 31 CaYbPt₃Sn₅, synthesis, Yb₂Pt₃Sn₅-type structure, and magnetic measurements, 150, 112 Yb3+ doped in Ba2LuTaO6, EPR study, 150, 31 YbB₆, interband transitions, IR-active phonons, and plasma vibrations, 154, 87 Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55 Yb₃Pd₄Ge₄, order of Pd and Ge atoms in, 154, 329 $(Y,Yb)Al_3(BO_3)_4$ solid solutions, crystal growth and characterization, 154, 317 # Yttrium AlSr₂YCu₂O₇, crystal growth and structure, **149**, 256 In_2O_3 - Y_2O_3 solid solutions doped with Sn, electrical, optical, and structural properties, **153**, 41 $In_4Sn_3O_{12}$ substituted with, structure and thermoelectric properties, 153, 349 Y_5M_2X (M = Ni,Pd; X = Sb,Bi) pnictides, crystal structure and bonding, 152, 478 (Y,RE)Al₃(BO₃)₄ solid solutions (RE = Nd,Gd,Ho,Yb,Lu), crystal growth and characterization, **154**, 317 YB₆, interband transitions, IR-active phonons, and plasma vibrations, 154, 87 YB₆₆, effect of transition metal doping, 154, 54 YBa₂Cu₄O₈ superconductor, HRTEM surface profile imaging, 149, 327 YB₄₁Si_{1.2}, transport phenomena, 154, 229 YCo₄B, magnetic properties, 154, 242 YCu₃Ti₃FeO₁₂, dielectric constant, **151**, 323 Y_{2/3}Cu₃Ti₄O₁₂, dielectric constant, **151**, 323 YMn₂D_{1.15}, structural and magnetic properties, 154, 398 YMn₂D₂ single phase, synthesis, study by *in situ* neutron diffraction, **150.** 183 Y₂NiB₁₀, synthesis, crystal structure, and magnetic and electrical properties, 154, 246 Y-Pd-B-C, chemical and superconducting properties, 154, 114 Y₂Ru₂O₇ pyrochlores, specific heat and ac susceptibility, **152**, 441 Y₂Si₂O₇, phase transformations in gel- and mixed-powder-derived polymorphs, X-ray diffraction and ²⁹Si MAS NMR studies, **149**, 16 $Y_2(WO_4)_3$, negative thermal expansion in, 149, 92 #### Ζ #### Zinc BaLaZnRuO₆, atomic and magnetic long-range ordering in, **150**, 383 BiZn₂PO₆, crystal structure, **153**, 48 $[C_6N_2H_{18}]^{2+}[Zn(HPO_4)(H_2PO_4)_2]^{2-}$, isolation and transformation to $[C_6N_2H_{18}]^{2+}[Zn_3(H_2O)_4(HPO_4)_4]^{2-}$, **150**, 417 Co-Cu-Mg-Zn-Cr spinel-type mixed oxides, synthesis and properties, 152, 526 FeZn₁₀ and Fe₁₃Zn₃₉, synthesis, crystal structure, and electronic and bonding analysis, **151**, 85 intercalation compounds of anionic oxalato complexes with layered double hydroxides, **153**, 301 LuFeO₃(ZnO)_m, charge distribution analysis: effect of coordination polyhedra shape on cation distribution, **150**, 96 mesostructured 3D materials based on $[Ge_4S_{10}]^{4-}$ and $[Ge_4Se_{10}]^{4-}$ units: surfactant templated disordered frameworks perforated with worm holes, **152**, 21 Na_{2-x}Ag_xZnP₂O₇, Ag(I) luminescence in, **149**, 284 Na₂ZnP₂O₇, crystal structure, **152**, 466 0.9[0.4Pb(Mg_{1/3}Nb_{2/3})O₃-0.6Pb(Zn_{1/3}Nb_{2/3})O₃]-0.1PbTiO₃, formation via mechanically activated nucleation and growth, **154**, 321 Sn-Zn-S system, mechanochemical reactions in, 153, 371 TlZn(PO₃)₃, structure and luminescence, 154, 584 $\{[W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMF)_2(DMSO)_2]\}_n$, 151, 286 $\{ [W_2Ag_2S_8] \cdot [Zn(4,4'-bipy)_2(DMSO)4] \cdot (DMSO) \}_n$, 151, 286 [Zn-Al-Cl] layered double hydroxide, thermally treated, X-ray diffraction pattern simulation, 152, 568 ZnCl₂, effect on structure and thermal stability of lamellar silica synthesized by neutral amine route, **149**, 113 $Zn_{(2-x)}Co_x(HPO_4)_3 \cdot C_3N_2H_{12}$ ($x \cong 0.05$) with 12 rings, synthesis and crystal structure, **149**, 107 ZnGa₂O₄ self-activated phosphors, luminescent properties, systematic tuning by Cd²⁺ substitution, **150**, 204 ZnO, sintered ceramics, redox reaction of Pr₂O₃ in, 149, 349 ZnO-B₂O₃ fluxes, effects on dieletric properties of BaTiO₃, 155, 86 ZnO-In₂O₃ and ZnO-indium oxide (ITO) films deposited by DC sputtering, structures and physical properties, **155**, 312 (ZnO)₅In₂O₃, isoelectronically substituted, structure and thermoelectric transport properties, **150**, 221 ZnO-WO₃ fluxes, effects on dieletric properties of BaTiO₃, 155, 86 $Zn_4(PO_4)_2(HPO_4)_2\cdot 0.5(C_{10}H_{28}N_4)\cdot 2H_2\bar{O},$ hydrothermal synthesis and crystal structure, **154**, 368 ## Zintl phases Ba_6Ge_{25-x} , $Ba_6Ge_{23}Sn_2$, and $Ba_6Ge_{22}In_3$, structure and thermoelectric properties, **153**, 321 Ba₃SiI₂, synthesis, structure, and properties, **152**, 460 metallic, related to EuSn₃Sb₄, synthesis, structure, and resistivity, **150**, 371 Yb₅In₂Sb₆, with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55 ### Zirconium $BaCe_xZr_{1-x}O_3$ (0 $\leq x \leq$ 1) mixed perovskites, high-pressure Raman study, **149**, 298 $BaHf_{1-x}Zr_x(PO_4)_2$, UV-emitting X-ray phosphor, 155, 229 t'_{meta}-(Ce_{0.5}Zr_{0.5})O₂ phase prepared by reduction and successive oxidation of t' phase, electrical conductivity, **151**, 253 Cu^I_{0.5}Mn^{II}_{0.25}Zr₂(PO₄)₃ Nasicon-type phosphate, structure and luminescence, 152, 453 Ge-Ta-Zr system, M₅Ge₄ compounds in, structure-composition relations and fractional site occupancy, **150**, 347 LaB₆-(Ti,Zr)B₂ alloys, eutectic crystallization, 154, 165 $LiZr_2(PO_4)_3$, β' and β phases, order-disorder and mobility of Li^+ in, neutron diffraction study, **152**, 340 Pb(Zr_{0.52}Ti_{0.48})O₃, formation via mechanically activated nucleation and growth, **154**, 321 β -rhombohedral boron doped with, thermoelectric properties, **154**, 13 ZrB₂, chemical vapor deposition, thermodynamic estimation, **154**, 157 ZrIn₂, structure, chemical bonding, and properties, 150, 19 ZrO₂ nanocrystals, tetragonal-monoclinic transition, crystallite size effect in, XRD and Raman spectroscopic study, 149, 399 $(ZrO_2)_{0.8}$ - $(\alpha$ -Fe₂O₃)_{0.2} powder for gas sensing applications, mechanical alloying and thermal decomposition, **155**, 320 $ZrM(OH)_2(NO_3)_3$ (M = K,Rb), ab initio structure determination from X-ray powder diffraction, 149, 167 ZrPOF-*n* family with 2D and 3D structure types, synthesis and crystal structures, **149**, 21 ZrSiO₄, pure and doped, hyperfine characterization, **150**, 14 Zircon-type phases $CeVO_4$, $Ce_{1-x}MVO_{4-0.5x}(M=Ca,Sr,Pb)$, and $Ce_{1-y}Bi_yVO_4$, preparation by solid-state reaction in air, **153**, 174 Zone center frequencies tetragonal CdAl₂Se₄, 153, 317